The development of high-performance fluorescence probes has been an active area of research. In the present work, two new pH sensors and based on a halogenated Schiff ligand ( = N, N'-(3,3'-dipropyhnethylamine) bis (3,5-chlorosalicylidene)) with linearity and a high signal-to-noise ratio were developed. Analyses revealed an exponential intensification in their fluorescence emission and a discernible chromatic shift upon pH increase from 5.0 to 7.0. The sensors could retain over 95% of their initial signal amplitude after 20 operational cycles, demonstrating excellent stability and reversibility. To elucidate their unique fluorescence response, a non-halogenated analog was introduced for comparison. The structural and optical characterization suggested that the introduction of halogen atoms can create additional interaction pathways between adjacent molecules and enhance the strength of the interaction, which not only improves the signal-to-noise ratio but also forms a long-range interaction process in the formation of the aggregation state, thus enhancing the response range. Meanwhile, the above proposed mechanism was also verified by theoretical calculations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253588 | PMC |
http://dx.doi.org/10.3390/ijms24119480 | DOI Listing |
Front Neurosci
January 2025
Graduate Program in Electrical Engineering, Federal University of Pará - UFPA, Belém, Brazil.
Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
McGill University, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada.
Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.
Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.
J Med Imaging (Bellingham)
January 2025
U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.
Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).
Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.
Langmuir
January 2025
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
As one of the key diagnostic methods for detecting biomarkers and antigen-antibody interactions, the luminescent oxygen channel immunoassay (LOCI) has been widely applied in bioanalysis and other fields. In the context of LOCI, the performance of the prepared donor polystyrene (PS) microspheres significantly impacts the detection signal values. In this study, an attempt was made to synthesize PS microspheres via one-step polymerization of styrene with an amphiphilic monomer (PEOOH), followed by swelling the silicon phthalocyanine photosensitizer into the PS microspheres, resulting in the functionalization of the PS microspheres with polyethylene glycol segments.
View Article and Find Full Text PDFTrends Hear
January 2025
Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China.
Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!