The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d--configured carbohydrate residue, -substitution on the aryl moiety (), with against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas - and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives and were found to be the most potent inhibitors against CA IX and XII, respectively ( = 6.8, 10.1 nM), and also endowed with outstanding selectivity ( > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on and to gain more insight into the key inhibitor-enzyme interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253577PMC
http://dx.doi.org/10.3390/ijms24119401DOI Listing

Publication Analysis

Top Keywords

conformationally restricted
4
restricted glycoconjugates
4
glycoconjugates derived
4
derived arylsulfonamides
4
arylsulfonamides coumarins
4
coumarins families
4
families tumour-associated
4
tumour-associated carbonic
4
carbonic anhydrase
4
inhibitors
4

Similar Publications

Macrocycles are increasingly considered as promising modalities to target challenging intracellular proteins. However, strategies for transitioning from active linear starting points to improved macrocycles are still underdeveloped. Here we explored the derivatization of linkers as an approach for macrocycle optimization.

View Article and Find Full Text PDF

The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD.

View Article and Find Full Text PDF

Cobalt-catalyzed conformationally restricted alkylarylation enables divergent access to Csp-rich N-heterocycles.

Chem Sci

September 2024

Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China

Article Synopsis
  • Csp-rich N-heterocycles are gaining attention in drug discovery due to their unique structure and spatial orientation, surpassing traditional aromatic compounds.
  • A new cobalt-catalyzed alkylarylation method allows for the efficient creation of diverse Csp-rich N-hetero(spiro)cycles using simple conditions, achieving over 70 different structures.
  • The methodology shows great promise for medicinal chemistry, as it offers broad applicability with good compatibility for functional groups and potential for developing pharmaceutically active molecules.
View Article and Find Full Text PDF

The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state.

View Article and Find Full Text PDF

Neutrophil extracellular trap (NET) formation is a unique self-defense mechanism of neutrophils; however, it is also involved in many diseases, including atherosclerosis. Resveratrol and catechin are antioxidants with anti-atherosclerotic properties. Here, we examined the effects of resveratrol, catechin, and other related compounds on NET formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!