Chelator PBT2 Forms a Ternary Cu Complex with β-Amyloid That Has High Stability but Low Specificity.

Int J Mol Sci

Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, F-75015 Paris, France.

Published: May 2023

The metal chelator PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) acts as a terdentate ligand capable of forming binary and ternary Cu complexes. It was clinically trialed as an Alzheimer's disease (AD) therapy but failed to progress beyond phase II. The β-amyloid (Aβ) peptide associated with AD was recently concluded to form a unique Cu(Aβ) complex that is inaccessible to PBT2. Herein, it is shown that the species ascribed to this binary Cu(Aβ) complex in fact corresponds to ternary Cu(PBT2)N complexes formed by the anchoring of Cu(PBT2) on imine nitrogen (N) donors of His side chains. The primary site of ternary complex formation is His6, with a conditional stepwise formation constant at pH 7.4 (Kc [M]) of logKc = 6.4 ± 0.1, and a second site is supplied by His13 or His14 (logKc = 4.4 ± 0.1). The stability of Cu(PBT2)N is comparable with that of the simplest Cu(PBT2)N complexes involving the N coordination of free imidazole (logKc = 4.22 ± 0.09) and histamine (logKc = 4.00 ± 0.05). The 100-fold larger formation constant for Cu(PBT2)N indicates that outer-sphere ligand-peptide interactions strongly stabilize its structure. Despite the relatively high stability of Cu(PBT2)N, PBT2 is a promiscuous chelator capable of forming a ternary Cu(PBT2)N complex with any ligand containing an N donor. These ligands include histamine, L-His, and ubiquitous His side chains of peptides and proteins in the extracellular milieu, whose combined effect should outweigh that of a single Cu(PBT2)N complex regardless of its stability. We therefore conclude that PBT2 is capable of accessing Cu(Aβ) complexes with high stability but low specificity. The results have implications for future AD therapeutic strategies and understanding the role of PBT2 in the bulk transport of transition metal ions. Given the repurposing of PBT2 as a drug for breaking antibiotic resistance, ternary Cu(PBT2)N and analogous Zn(PBT2)N complexes may be relevant to its antimicrobial properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252752PMC
http://dx.doi.org/10.3390/ijms24119267DOI Listing

Publication Analysis

Top Keywords

high stability
12
ternary cupbt2n
12
chelator pbt2
8
ternary complex
8
stability low
8
low specificity
8
capable forming
8
cuaβ complex
8
cupbt2n
8
cupbt2n complexes
8

Similar Publications

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Dative bonds are typically polar, weaker, and longer than electron-sharing covalent bonds. The intriguing diatomic BeF anion uniquely exhibits triple Be-F dative bonding with a considerable bond dissociation energy (BDE) of 88 kcal/mol. Here, we report exceptionally strong dative-bonded systems, [CO]BeF and [CO]BeF, with BDE values exceeding 155 kcal/mol by integrating [CO] and [CO] groups into the BeF framework.

View Article and Find Full Text PDF

Aqueous zinc-iodine batteries (AZIBs) are gaining attention as next-generation energy storage systems due to their high theoretical capacity, enhanced safety, and cost-effectiveness. However, their practical application is hindered by challenges such as slow reaction kinetics and the persistent polyiodide shuttle effect. To address these limitations, we developed a novel class of covalent organic frameworks (COFs) featuring electron-rich nitrogen sites with varied density and distribution (N1-N4) along the pore walls.

View Article and Find Full Text PDF

Anaerobic Adhesive Effect on the Counter-Torque of Zirconia Implant Abutment Screws: In Vitro Study.

Clin Implant Dent Relat Res

February 2025

Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Introduction: Implantology has become a primary solution for tooth loss due to excellent osseointegration and high long-term success rates. However, complications such as abutment screw loosening, especially in implant-supported single crowns, compromise prosthesis longevity. Anaerobic adhesives (AAs) have shown promise in mechanical fields for preventing screw loosening, but their effectiveness in dental implants, particularly zirconia, remains uncertain.

View Article and Find Full Text PDF

Metal hexacyanoferrates (HCFs), also known as Prussian blue analogues, are ideal cathodes for potassium-ion batteries (PIBs) due to their nontoxicity and cost-effectiveness. Nevertheless, obtaining metal HCF cathode materials with both long-term cycling stability and high rate performance remains a daunting challenge. In this study, we present mesoporous single-crystalline iron hexacyanoferrate (MSC-FeHCF) microspheres, featuring a single-crystalline structure that contains interconnected pores spanning the entire crystal lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!