Although liver regeneration has been extensively studied, the effects of bile-derived extracellular vesicles (bile EVs) on hepatocytes has not been elucidated. We examined the influence of bile EVs, collected from a rat model of 70% partial hepatectomy (PH), on hepatocytes. We produced bile-duct-cannulated rats. Bile was collected over time through an extracorporeal bile duct cannulation tube. Bile EVs were extracted via size exclusion chromatography. The number of EVs released into the bile per liver weight 12 h after PH significantly increased. Bile EVs collected 12 and 24 h post-PH, and after sham surgery (PH12-EVs, PH24-EVs, sham-EVs) were added to the rat hepatocyte cell line, and 24 h later, RNA was extracted and transcriptome analysis performed. The analysis revealed that more upregulated/downregulated genes were observed in the group with PH24-EVs. Moreover, the gene ontology (GO) analysis focusing on the cell cycle revealed an upregulation of 28 types of genes in the PH-24 group, including genes that promote cell cycle progression, compared to the sham group. PH24-EVs induced hepatocyte proliferation in a dose-dependent manner in vitro, whereas sham-Evs showed no significant difference compared to the controls. This study revealed that post-PH bile Evs promote the proliferation of the hepatocytes, and genes promoting cell cycles are upregulated in hepatocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252839 | PMC |
http://dx.doi.org/10.3390/ijms24119230 | DOI Listing |
Trends Parasitol
December 2024
Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia. Electronic address:
Liver fluke infection is a major risk for cholangiocarcinoma (CCA). It has been established that the Asian liver flukes, Clonorchis sinensis and Opisthorchis viverrini secrete growth factors, digestive enzymes, and extracellular vesicles (EVs) which contribute to abnormal cell development in the bile ducts where the worms reside. These secretions - combined with aberrant inflammation and repeated cycles of chronic wounding at the site of parasite attachment and grazing on the epithelium - promote biliary hyperplasia and fibrosis and ultimately malignant transformation.
View Article and Find Full Text PDFGenome Med
October 2024
Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Background: Circular RNAs (circRNAs) have emerged as a prominent class of covalently closed single-stranded RNA molecules that exhibit tissue-specific expression and potential as biomarkers in extracellular vesicles (EVs) derived from liquid biopsies. Still, their characteristics and applications in EVs remain to be unveiled.
Methods: We performed a comprehensive analysis of EV-derived circRNAs (EV-circRNAs) using transcriptomics data obtained from 1082 human body fluids, including plasma, urine, cerebrospinal fluid (CSF), and bile.
PLoS Negl Trop Dis
October 2024
Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Clonorchis sinensis infection is an important risk factor for cholangiocarcinoma (CCA). It has been reported that extracellular vesicles (EVs) are involved in the parasite-host interaction, and EVs of C. sinensis (CsEVs) can contribute to biliary injuries and inflammation.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
Int J Parasitol
October 2024
Área de Parasitología, Departament de Farmacia i Tecnologia Farmacèutica i Parasitologia. Universitat de València, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research IIS La Fe-Universitat de València, Valencia, Spain. Electronic address:
Fasciola hepatica and Dicrocoelium dendriticum are parasitic trematodes residing in the bile ducts of mammalian hosts, causing, in some cases, impairment of liver function and hepatic fibrosis. Previous studies have shown that extracellular vesicles released by F. hepatica (FhEVs) and D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!