Inducible and Conditional Activation of Adult Neurogenesis Rescues Cadmium-Induced Hippocampus-Dependent Memory Deficits in ApoE4-KI Mice.

Int J Mol Sci

Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, USA.

Published: May 2023

The apolipoprotein E (ApoE) gene is a genetic risk factor for late-onset Alzheimer's disease, in which ε4 allele carriers have increased risk compared to the common ε3 carriers. Cadmium (Cd) is a toxic heavy metal and a potential neurotoxicant. We previously reported a gene-environment interaction (GxE) effect between ApoE4 and Cd that accelerates or increases the severity of the cognitive decline in ApoE4-knockin (ApoE4-KI) mice exposed to 0.6 mg/L CdCl through drinking water compared to control ApoE3-KI mice. However, the mechanisms underlying this GxE effect are not yet defined. Because Cd impairs adult neurogenesis, we investigated whether genetic and conditional stimulation of adult neurogenesis can functionally rescue Cd-induced cognitive impairment in ApoE4-KI mice. We crossed either ApoE4-KI or ApoE3-KI to an inducible Cre mouse strain, Nestin-CreER:caMEK5-eGFP (designated as caMEK5), to generate ApoE4-KI:caMEK5 and ApoE3-KI:caMEK5. Tamoxifen administration in these mice genetically and conditionally induces the expression of caMEK5 in adult neural stem/progenitor cells, enabling the stimulation of adult neurogenesis in the brain. Male ApoE4-KI:caMEK5 and ApoE3-KI:caMEK5 mice were exposed to 0.6 mg/L CdCl throughout the experiment, and tamoxifen was administered once Cd-induced impairment in spatial working memory was consistently observed. Cd exposure impaired spatial working memory earlier in ApoE4-KI:caMEK5 than in ApoE3-KI:caMEK5 mice. In both strains, these deficits were rescued after tamoxifen treatment. Consistent with these behavioral findings, tamoxifen treatment enhanced adult neurogenesis by increasing the morphological complexity of adult-born immature neurons. These results provide evidence for a direct link between impaired spatial memory and adult neurogenesis in this GxE model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253189PMC
http://dx.doi.org/10.3390/ijms24119118DOI Listing

Publication Analysis

Top Keywords

adult neurogenesis
24
apoe4-ki mice
12
apoe4-kicamek5 apoe3-kicamek5
12
mice exposed
8
exposed mg/l
8
mg/l cdcl
8
stimulation adult
8
apoe3-kicamek5 mice
8
spatial working
8
working memory
8

Similar Publications

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by hallmark pathologies that affect many brain regions, including the cellular microenvironment with the hippocampus, ultimately leading to profound deficits in cognition. Surprising recent work has shown that factors in the systemic environment regulate the hippocampal cellular niche; age-associated blood-borne factors exacerbate brain aging phenotypes, whereas youth-associated blood-borne factors, including tissue inhibitor of metalloproteinases 2 (TIMP2), reverse or ameliorate features of brain aging. As aging serves as the major risk factor for AD, and recent work shows that systemic factors can regulate AD pathology, we sought to characterize mechanisms by which the systemic environment regulates CNS phenotypes relevant to AD pathology through changes in neuroinflammation.

View Article and Find Full Text PDF

Ageing changes the adult brain at the molecular, cellular and functional levels, driving regenerative decline, inflammation, cognitive impairments and susceptibility to dementia-related neurodegenerative disorders, such as Alzheimer's disease (AD). There is overwhelming evidence that regular physical exercise can counteract cognitive decline in both healthy ageing and in neurodegenerative conditions such as AD, with exerkines, the circulating humoral factors that are secreted into the blood stream in response to exercise, emerging as likely mediators of this response. However, the source and identity of these exerkines remain unclear.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Brown University, Providence, RI, USA.

Background: Chitinase-3-like protein 1 (CHI3L1, or YKL-40) is an important regulator of immunity and, in the brain, is primarily secreted by activated astrocytes and heralds a neurotoxic inflammatory state. While it has been well known as a high-profile biomarker for Alzheimer's disease (AD) and inflammatory brain conditions (e.g.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: Excessive high-fat diet (HFD) consumption develops the obese pre-diabetic condition, which initiates neuroinflammation and numerous brain pathologies, resulting in cognitive decline (1). A cinnamamide derivative compound (2i-10) is recently identified as a novel myeloid differentiation factor 2 (MD-2) inhibitor, and has been shown to attenuate inflammation via toll-like receptor 4 (TLR4) signaling pathway (2). However, the effects of 2i-10 on the neuroinflammation, brain pathologies and cognitive function in the obese pre-diabetic rats have never been studied.

View Article and Find Full Text PDF

Background: The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD), increasing risk from 3-12-fold relative to the common ε3 allele. Seminal studies have revealed that age-related changes in blood-CNS communication regulate cognitive function. More recently, youth-associated blood-borne proteins revitalize the aged brain, improving hippocampal function and increasing adult neurogenesis and dendritic spine plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!