Frailty Syndrome as a Transition from Compensation to Decompensation: Application to the Biomechanical Regulation of Gait.

Int J Environ Res Public Health

Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.

Published: May 2023

Most gait parameters decrease with age and are even more importantly reduced with frailty. However, other gait parameters exhibit different or even opposite trends for aging and frailty, and the underlying reason is unclear. Literature focuses either on aging, or on frailty, and a comprehensive understanding of how biomechanical gait regulation evolves with aging and with frailty seems to be lacking. We monitored gait dynamics in young adults (19-29 years, n = 27, 59% women), middle-aged adults (30-59 years, n = 16, 62% women), and non-frail (>60 years, n = 15, 33% women) and frail older adults (>60 years, n = 31, 71% women) during a 160 m walking test using the triaxial accelerometer of the Zephyr Bioharness 3.0 device (Zephyr Technology, Annapolis, MD, USA). Frailty was evaluated using the Frail Scale (FS) and the Clinical Frailty Scale (CFS). We found that in non-frail older adults, certain gait parameters, such as cadence, were increased, whereas other parameters, such as step length, were decreased, and gait speed is maintained. Conversely, in frail older adults, all gait parameters, including gait speed, were decreased. Our interpretation is that non-frail older adults compensate for a decreased step length with an increased cadence to maintain a functional gait speed, whereas frail older adults decompensate and consequently walk with a characteristic decreased gait speed. We quantified compensation and decompensation on a continuous scale using ratios of the compensated parameter with respect to the corresponding compensating parameter. Compensation and decompensation are general medical concepts that can be applied and quantified for many, if not all, biomechanical and physiological regulatory mechanisms of the human body. This may allow for a new research strategy to quantify both aging and frailty in a systemic and dynamic way.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253052PMC
http://dx.doi.org/10.3390/ijerph20115995DOI Listing

Publication Analysis

Top Keywords

older adults
20
gait parameters
16
aging frailty
16
gait speed
16
compensation decompensation
12
frail older
12
gait
11
frailty
8
>60 years
8
non-frail older
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!