Dry-cured ham (DCH) could support the growth of as a halotolerant bacterium, which may compromise the shelf-stability of the product according to the growth/no growth boundary models and the physicochemical parameters of commercial DCH. In the present study, the behavior of is evaluated in sliced DCH with different water activity (a 0.861-0.925), packaged under air, vacuum, or modified atmosphere (MAP), and stored at different temperatures (2-25 °C) for up to 1 year. The Logistic and the Weibull models were fitted to data to estimate the primary kinetic parameters for the pathogen Log increase and Log reduction, respectively. Then, polynomial models were developed as secondary models following their integration into the primary Weibull model to obtain a global model for each packaging. Growth was observed for samples with the highest a stored at 20 and 25 °C in air-packaged DCH. For lower a, progressive inactivation of was observed, being faster at the lowest temperature (15 °C) for air-packaged DCH. In contrast, for vacuum and MAP-packaged DCH, a higher storage temperature resulted in faster inactivation without a significant effect of the product a. The results of this study clearly indicate that the behavior of is highly dependent on factors such as storage temperature, packaging conditions and product a. The developed models provide a management tool for evaluating the risk associated with DCH and for preventing the development of by selecting the most appropriate packaging according to a range and storage temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252274PMC
http://dx.doi.org/10.3390/foods12112199DOI Listing

Publication Analysis

Top Keywords

storage temperature
16
dry-cured ham
8
water activity
8
°c air-packaged
8
air-packaged dch
8
dch
7
temperature
5
models
5
growth
4
growth non-thermal
4

Similar Publications

Constructing a green modifier by using glyoxal-urea resin and chitosan to obtain a modified soy protein adhesive with high bonding strength and excellent water resistance.

Int J Biol Macromol

December 2024

Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:

The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).

View Article and Find Full Text PDF

The application of cellulose nanofibers (CNF) as cryoprotectants in frozen foods has rarely been explored. In this study, the cryoprotective effect of CNF (2, 4 and 6 % w/w) on mechanically separated chicken meat (MSCM) surimi-like material was investigated, during frozen storage (5 and 60 days) under temperature fluctuation. Surimi-like without cryopreservation agents was more susceptible to protein oxidation due to ice recrystallization.

View Article and Find Full Text PDF

Effect of oxidation on finely segmented products of snakehead: Digestibility and microstructure.

Food Chem

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

The present study was performed to investigate the digestive profiles of snakeheads' belly muscles (BM), tail muscles (TM) dorsal muscles (DM), and eye muscles (EM), with further explorations of relevant factors. Kinetic models were adopted to describe the digestion process with crucial parameters. BM showed the highest digestibility and digestive rate, followed by DM, TM, and EM.

View Article and Find Full Text PDF

Mechanical characteristics of spinal cord tissue by indentation.

J Mech Behav Biomed Mater

December 2024

Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany. Electronic address:

The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading.

View Article and Find Full Text PDF

Evaluation of metabolite stability in dried blood spot stored at different temperatures and times.

Sci Rep

December 2024

Metanotitia Inc, Building C4, Science and Technology Innovation Headquarters, Shenzhen (Harbin) Industrial Park, 288 Zhigu Street, Songbei District, Harbin, 150029, China.

Dried blood spot (DBS) sampling offers significant advantages over conventional blood collection methods, such as reduced sample volume, minimal invasiveness, suitability for home-based sampling, and ease of transport. However, understanding the effects of variable storage temperatures and times on metabolite stability is crucial due to varying intervals and delivery conditions between sample collection and metabolomics analysis. To minimize biological variances, all samples were collected from the same individual simultaneously and stored at three different temperatures (4 °C, 25 °C, and 40 °C) for diverse time points (3, 7, 14, and 21 days).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!