This study was undertaken to investigate the enzymatic hydrolysis of lentil starch concentrates from conventional cooked seeds (CCLSC) by the action of different types of enzymes, including pancreatin (PC-EHSC), heat-stable α-amylase (HS-EHSC), β-amylase (βA-EHSC), amyloglucosidase (AMG-EHSC), and multi-enzymes (βA-HS-AMG-EHSC); their multi-scale structural characteristics of the enzymatic hydrolysis products of lentil starch concentrates were compared. The morphological features distinguished among different samples. The Fourier-transform infrared spectroscopy and solid-state C CP/MAS NMR spectral features indicated the possible formation of a binary and ternary complex among amylose, protein and lipids. The X-ray diffraction results revealed that the V-type characteristic diffraction peaks were more obvious for samples including PC-EHSC and βA-EHSC, which was in line with their lowest polydispersity index (DP). PC-EHSC and βA-EHSC also showed an increased peak intensity of the scattering maximum on the small-angle X-ray scattering spectra, whereas CCLSC exhibited an overall lower peak intensity within the studied range of scattering. The highest XRD crystallinity and the lowest DP value obtained for PC-EHSC indicated that the starch polymers modified by pancreatin could produce glucan chains with a comparatively homogenous distribution that are readily recrystallized by hydrogen bonding through chain aggregation. Comparatively, the lowest relative crystallinity for HS-EHSC obtained from XRD suggested that thermostable α-amylolysis was unfavorable for the formation of starch structure with a higher degree of molecular order. This study could provide useful information for the needed research to obtain a deeper understanding of the impact of different amylolysis actions on the structural organization of starch hydrolysates and to provide a theoretical foundation for the development of fermentable enzymatically hydrolyzed starch with well-tailored physiological properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253006 | PMC |
http://dx.doi.org/10.3390/foods12112150 | DOI Listing |
J Biosci Bioeng
January 2025
Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada. Electronic address:
Starch-rich faba bean, yellow lentil, and yellow field pea flours were subjected to submerged fermentation using Aspergillus oryzae and Lactobacillus plantarum starter mono- or co-cultures, to increase protein contents of the flours. Fermentation mixes were supplemented with up to 35 g/L urea, ammonium sulfate and/or monoammonium phosphate as nitrogen sources. Protein contents of the flours increased 2-2.
View Article and Find Full Text PDFFoods
January 2025
Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.
The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors.
View Article and Find Full Text PDFFoods
December 2024
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
Starches with different degrees of debranching (DBS30, DBS60, and DBS90) and sodium alginate were used as the wall material for encapsulating particles of GG (LGG). The structural characteristics of these encapsulated particles were examined, along with the impact of varying levels of debranching on the encapsulation efficiency, the in vitro release of LGG under the simulated gastrointestinal environment, and the storage stability of the encapsulated particles. The results revealed a transformation in the crystalline polymorph from C- to B+V-type following debranching and retrogradation.
View Article and Find Full Text PDFNutrients
November 2024
FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
: The increase in the older adult population worldwide and the need to switch to vegetal-origin protein consumption for environmental sustainability point to legumes and pseudocereals as alternative ingredients in new food formulations. This study aimed to assess the impact of food structure and fungal fermentation on the digestibility of new food prototypes made with quinoa and/or lentil flours addressed to older adults. : Four gels and six breads were elaborated and subjected to mechanical analysis and simulated gastrointestinal in vitro digestion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!