One of the main challenges of photocatalysis is to find a stable and effective photocatalyst, that is active and effective under sunlight. Here, we discuss the photocatalytic degradation of phenol as a model pollutant in aqueous solution using NUV-Vis (>366 nm) and UV (254 nm) in the presence of TiO-P25 impregnated with different concentrations of Co (0.1%, 0.3%, 0.5%, and 1%). The modification of the surface of the photocatalyst was performed by wet impregnation, and the obtained solids were characterized using X-ray diffraction, XPS, SEM, EDS, TEM, N physisorption, Raman and UV-Vis DRS, which revealed the structural and morphological stability of the modified material. BET isotherms are type IV, with slit-shaped pores formed by nonrigid aggregate particles and no pore networks and a small H3 loop near the maximum relative pressure. The doped samples show increased crystallite sizes and a lower band gap, extending visible light harvesting. All prepared catalysts showed band gaps in the interval 2.3-2.5 eV. The photocatalytic degradation of aqueous phenol over TiO-P25 and Co(X%)/TiO was monitored using UV-Vis spectrophotometry: Co(0.1%)/TiO being the most effective with NUV-Vis irradiation. TOC analysis showed ca. 96% TOC removal with NUV-Vis radiation, while only 23% removal under UV radiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254245 | PMC |
http://dx.doi.org/10.3390/ma16114134 | DOI Listing |
RSC Adv
January 2025
LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto Rua Dr Roberto Frias 4200-465 Porto Portugal
Additive Manufacturing (AM) was evaluated as a promising technology for constructing photocatalytic reactors due to its inherent ability to produce complex geometries with high precision and customization. In this work, a 3D structure was designed to achieve a good light distribution inside a cylindrical batch reactor and printed using the stereolithography (SLA) technique. A hybrid material composed of a commercial photoreactive resin (Formlabs Clear V4) and the benchmark photocatalyst TiO P25 Evonik (1 wt%) was prepared and characterized by scanning electron microscopy (SEM) and rheological and mechanical methods.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology Patiala 147004 Punjab India
Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-CN/BiMoO [g-CN/Bi@BiMoO] ternary nanocomposite was prepared using the wet impregnation method.
View Article and Find Full Text PDFACS Omega
January 2025
Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
Pickering emulsions (PEs) have demonstrated significant potential in various fields, including catalysis, biomedical applications, and food science, with notable advancements in wastewater treatment through photocatalysis. This study explores the development and application of TiO-poly(-isopropylacrylamide) (pNIPAm) composite gels as a novel framework for photocatalytic wastewater remediation. The research focuses on overcoming challenges associated with conventional nanoparticle-based photocatalytic systems, such as agglomeration and inefficient recovery of particles.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
1,4-Dihydronicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) are essential cofactors required for all living cells, playing pivotal roles in multiple biological processes such as energy metabolism and biosynthesis. NADPH is produced during photosynthesis by the combination of photosystem II, where water is oxidised, and photosystem I, where NADP is reduced. This review focuses on catalytic NAD(P) (and its analogues) reduction to generate 1,4-NAD(P)H without formation of other regioisomers and the dimer.
View Article and Find Full Text PDFSmall
January 2025
Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK.
Bismuth-layered ferroelectric nanomaterials exhibit great potential for piezo-photocatalysis. However, a major challenge lies in the difficulty of recovering the catalytic powders, raising concerns regarding secondary pollution of water. In this work, a novel hierarchical porous ferroelectric ceramic containing {110} surface-exposed BiNdTiO (BIT-Nd) nanosheet arrays is grown on a porous ceramic matrix for efficient and recyclable piezo-photocatalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!