This study evaluates a binary mixture of fly ash and lime as a stabilizer for natural soils. A comparative analysis was performed on the effect on the bearing capacity of silty, sandy and clayey soils after the addition of lime and ordinary Portland cement as conventional stabilizers, and a non-conventional product of a binary mixture of fly ash and Ca(OH) called FLM. Laboratory tests were carried out to evaluate the effect of additions on the bearing capacity of stabilized soils by unconfined compressive strength (UCS). In addition, a mineralogical analysis to validate the presence of cementitious phases due to chemical reactions with FLM was performed. The highest UCS values were found in the soils that required the highest water demand for compaction. Thus, the silty soil added with FLM reached 10 MPa after 28 days of curing, which was in agreement with the analysis of the FLM pastes, where soil moistures higher than 20% showed the best mechanical characteristics. Furthermore, a 120 m long track was built with stabilized soil to evaluate its structural behavior for 10 months. An increase of 200% in the resilient modulus of the FLM-stabilized soils was identified, and a decrease of up to 50% in the roughness index of the FLM, lime (L) and Ordinary Portland Cement (OPC)-stabilized soils compared to the soil without addition, resulting in more functional surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254164PMC
http://dx.doi.org/10.3390/ma16113996DOI Listing

Publication Analysis

Top Keywords

bearing capacity
12
portland cement
12
natural soils
8
conventional stabilizers
8
binary mixture
8
mixture fly
8
fly ash
8
lime ordinary
8
ordinary portland
8
soils
7

Similar Publications

Oncolytic adenoviral therapy is a promising approach for pancreatic cancer treatment. However, the limited capacity of murine cells to produce infectious viral progeny precludes the full evaluation of the virotherapy in a suitable immunocompetent mouse model. Here, we report that the murine KPC-I cell line, established from pancreatic tumors developed in ; ; mice, is susceptible to adenoviral replication and generates a progeny of infective virions similar to those from infected human A549 cells.

View Article and Find Full Text PDF

A novel chiral ligand, named MAdPHOS, bearing a P-stereogenic phosphane and a diadamantyl phosphane linked by a NH bridge has been synthesized. This bulky, C-symmetric, PNP ligand has been prepared from enantiopure -butylmethyl aminophosphane and was obtained as a crystalline solid. The NH/PH tautomerism, air-stability, and σ-donor capacity of MAdPHOS have been assessed herein.

View Article and Find Full Text PDF

Osteomyelitis, a severe bone infection, is an extremely challenging complication in the repair of traumatic bone defects. Furthermore, the use of long-term high-dose antibiotics in standard treatment increases the risks of antibiotic resistance. Herein, an antibiotic-free, collagen silver-doped hydroxyapatite (coll-AgHA) scaffold reinforced with a 3D printed polycaprolactone (PCL) framework was developed with enhanced mechanical properties to be used in the repair of load-bearing defects with antimicrobial properties as a preventative measure against osteomyelitis.

View Article and Find Full Text PDF

This study investigates the performance of a skirt sand pile (SSP) system beneath a circular shallow footing using three-dimensional finite element analysis calibrated against a large-scale experimental setup. The SSP, measuring 8.00 m in length and 1.

View Article and Find Full Text PDF

Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!