Efficient, Fine-Grained Fly Ash Concrete Based on Metal and Basalt Fibers.

Materials (Basel)

Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, 35959 Rzeszow, Poland.

Published: May 2023

This article presents the results of a study of the physical and mechanical properties of fine-grained fly ash concrete based on a combined reinforcement with steel and basalt fibers. The main studies were conducted using mathematical planning of experiments, which allowed the experiments to be algorithmized in terms of both the amount of experimental work and statistical requirements. Quantitative dependences characterizing the effect of the content of cement, fly ash binder, steel, and basalt fiber on the compressive strength and tensile splitting strength of fiber-reinforced concrete were obtained. It has been shown that the use of fiber can increase the efficiency factor of dispersed reinforcement (the tensile splitting strength to compressive strength ratio). To increase the resistance of basalt fiber, it is proposed to use fly ash in cement systems, which reduces the amount of free lime in the hydrating cement environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254556PMC
http://dx.doi.org/10.3390/ma16113969DOI Listing

Publication Analysis

Top Keywords

fly ash
16
fine-grained fly
8
ash concrete
8
concrete based
8
basalt fibers
8
steel basalt
8
basalt fiber
8
compressive strength
8
tensile splitting
8
splitting strength
8

Similar Publications

This study addresses the challenge of reducing "net" toxic pollutant discharge, specifically dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), while minimizing the energy consumption and costs associated with detoxification. Our research focuses on reintroducing fly ash and scrubber sludge (ASR) into a hazardous waste thermal treatment system equipped with gasification-intense low oxygen dilution (GASMILD) and an advanced air pollution control system (APCS). This approach yielded a remarkable PCDD/F removal efficiency exceeding 99.

View Article and Find Full Text PDF

Evaluating energy consumption patterns in novel foamed ternary alkali-activated masonry blocks.

Sci Rep

January 2025

Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.

This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.

View Article and Find Full Text PDF

Green coal and lubricant via hydrogen-free hydrothermal liquefaction of biomass.

Nat Commun

January 2025

Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China.

Biocrude derived from biomass via hydrothermal liquefaction (HTL) is a sustainable substitute for petroleum to obtain energy and biochemicals. Upgrading biocrude inevitably faces the trade-off between consuming large amounts of hydrogen via hydrotreating and high yield of solid residue without additional hydrogen. In this work, we report a non-hydrogenated refinery paradigm for nearly complete valorization (~90%), via co-generating green coal and bio-lubricant.

View Article and Find Full Text PDF

Pro-inflammatory effects of inhaled Great Salt Lake dust particles.

Part Fibre Toxicol

January 2025

Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA.

Background: Climate change and human activities have caused the drying of marine environments around the world. An example is the Great Salt Lake in Utah, USA which is at a near record low water level. Adverse health effects have been associated with exposure to windblown dust originating from dried lakebed sediments, but mechanistic studies evaluating the health effects of these dusts are limited.

View Article and Find Full Text PDF

Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!