A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. | LitMetric

This paper investigates the effects on the material microstructure of varying the Inter-Layer Cooling Time (ILCT) during the printing process in laser powder bed fusion (L-PBF) multi-laser machines. Despite these machines allowing higher productivity rates compared to single laser machines, they are affected by lower ILCT values, which could be critical for material printability and microstructure. The ILCT values depend both on the process parameter sets and design choices for the parts and play an important role in the Design for Additive Manufacturing approach in L-PBF process. In order to identify the critical range of ILCT for this working condition, an experimental campaign is presented on the nickel-based superalloy Inconel 718, which is widely used for the printing of turbomachinery components. The effect of ILCT on the microstructure of the material is evaluated in terms of porosity and melt pool analysis on printed cylinder specimens, considering ILCT decreasing and increasing in the range of 22 to 2 s. The experimental campaign shows that an ILCT of less than 6 s introduces criticality in the material microstructure. In particular, at an ILCT value of 2 s, widespread keyhole porosity (close to 1‱) and critical and deeper melt pool (about 200 microns depth) are measured. This variation in melt pool shape indicates a change in the powder melting regime and, consequently, modifications of the printability window promoting the expansion of the keyhole region. In addition, specimens with geometry obstructing the heat flow have been studied using the critical ILCT value (2 s) to evaluate the effect of the surface-to-volume ratio. The results show an enhancement of the porosity value (about 3‱), while this effect is limited for the depth of the melt pool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253632PMC
http://dx.doi.org/10.3390/ma16113920DOI Listing

Publication Analysis

Top Keywords

melt pool
20
ilct
9
inter-layer cooling
8
cooling time
8
porosity melt
8
inconel 718
8
laser powder
8
powder bed
8
bed fusion
8
material microstructure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!