Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Obstructive sleep apnea (OSA), characterized by recurrent episodes of partial or total obstruction of the upper airway during sleep, is currently one of the respiratory pathologies with the highest incidence worldwide. This situation has led to an increase in the demand for medical appointments and specific diagnostic studies, resulting in long waiting lists, with all the health consequences that this entails for the affected patients. In this context, this paper proposes the design and development of a novel intelligent decision support system applied to the diagnosis of OSA, aiming to identify patients suspected of suffering from the pathology. For this purpose, two sets of heterogeneous information are considered. The first one includes objective data related to the patient's health profile, with information usually available in electronic health records (anthropometric information, habits, diagnosed conditions and prescribed treatments). The second type includes subjective data related to the specific OSA symptomatology reported by the patient in a specific interview. For the processing of this information, a machine-learning classification algorithm and a set of fuzzy expert systems arranged in cascade are used, obtaining, as a result, two indicators related to the risk of suffering from the disease. Subsequently, by interpreting both risk indicators, it will be possible to determine the severity of the patients' condition and to generate alerts. For the initial tests, a software artifact was built using a dataset with 4400 patients from the Álvaro Cunqueiro Hospital (Vigo, Galicia, Spain). The preliminary results obtained are promising and demonstrate the potential usefulness of this type of tool in the diagnosis of OSA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252542 | PMC |
http://dx.doi.org/10.3390/diagnostics13111854 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!