Carotid intima-media thickness (c-IMT) is a reliable risk factor for cardiovascular disease risk in type 2 diabetes (T2D) patients. The present study aimed to compare the effectiveness of different machine learning methods and traditional multiple logistic regression in predicting c-IMT using baseline features and to establish the most significant risk factors in a T2D cohort. We followed up with 924 patients with T2D for four years, with 75% of the participants used for model development. Machine learning methods, including classification and regression tree, random forest, eXtreme gradient boosting, and Naïve Bayes classifier, were used to predict c-IMT. The results showed that all machine learning methods, except for classification and regression tree, were not inferior to multiple logistic regression in predicting c-IMT in terms of higher area under receiver operation curve. The most significant risk factors for c-IMT were age, sex, creatinine, body mass index, diastolic blood pressure, and duration of diabetes, sequentially. Conclusively, machine learning methods could improve the prediction of c-IMT in T2D patients compared to conventional logistic regression models. This could have crucial implications for the early identification and management of cardiovascular disease in T2D patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252947PMC
http://dx.doi.org/10.3390/diagnostics13111834DOI Listing

Publication Analysis

Top Keywords

machine learning
20
learning methods
16
t2d patients
12
logistic regression
12
carotid intima-media
8
intima-media thickness
8
type diabetes
8
cardiovascular disease
8
multiple logistic
8
regression predicting
8

Similar Publications

Article Synopsis
  • Understanding the associations between traits and microbial composition is critical for microbiome research, but machine learning models often struggle due to the data's high-dimensional, compositional, and imbalanced nature.
  • To tackle these challenges, a new data augmentation method called PhyloMix has been developed, which uses phylogenetic relationships to generate synthetic microbial samples that enhance model performance.
  • PhyloMix significantly outperforms other data augmentation techniques and is effective in both supervised learning and contrastive representation learning, demonstrating its broad applicability in microbiome studies.
View Article and Find Full Text PDF

Transformative change is needed across the food system to improve health and environmental outcomes. As food, nutrition, environmental and health data are generated beyond human scale, there is an opportunity for technological tools to support multifactorial, integrated, scalable approaches to address the complexities of dietary behaviour change. Responsible technology could act as a mechanistic conduit between research, policy, industry and society, enabling timely, informed decision making and action by all stakeholders across the food system.

View Article and Find Full Text PDF

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!