Several advances in computing facilities were made due to the advancement of science and technology, including the implementation of automation in multi-specialty hospitals. This research aims to develop an efficient deep-learning-based brain-tumor (BT) detection scheme to detect the tumor in FLAIR- and T2-modality magnetic-resonance-imaging (MRI) slices. MRI slices of the axial-plane brain are used to test and verify the scheme. The reliability of the developed scheme is also verified through clinically collected MRI slices. In the proposed scheme, the following stages are involved: (i) pre-processing the raw MRI image, (ii) deep-feature extraction using pretrained schemes, (iii) watershed-algorithm-based BT segmentation and mining the shape features, (iv) feature optimization using the elephant-herding algorithm (EHA), and (v) binary classification and verification using three-fold cross-validation. Using (a) individual features, (b) dual deep features, and (c) integrated features, the BT-classification task is accomplished in this study. Each experiment is conducted separately on the chosen BRATS and TCIA benchmark MRI slices. This research indicates that the integrated feature-based scheme helps to achieve a classification accuracy of 99.6667% when a support-vector-machine (SVM) classifier is considered. Further, the performance of this scheme is verified using noise-attacked MRI slices, and better classification results are achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252483 | PMC |
http://dx.doi.org/10.3390/diagnostics13111832 | DOI Listing |
Front Oncol
December 2024
Department of Radiology, School of Medicine, University of Washington, Seattle, WA, United States.
Introduction: Diffusion weighted MRI (DWI) has emerged as a promising adjunct to reduce unnecessary biopsies prompted by breast MRI through use of apparent diffusion coefficient (ADC) measures. The purpose of this study was to investigate the effects of different lesion ADC measurement approaches and ADC cutoffs on the diagnostic performance of breast DWI in a high-risk MRI screening cohort to identify the optimal approach for clinical incorporation.
Methods: Consecutive screening breast MRI examinations (August 2014-Dec 2018) that prompted a biopsy for a suspicious breast lesion (BI-RADS 4 or 5) were retrospectively evaluated.
Purpose: To clarify the femoral tunnel location for a virtual anterior cruciate ligament (ACL) graft to simulate the native ACL.
Methods: Three-dimensional (3D) computed tomography (CT) and magnetic resonance imaging (MRI) were obtained in 14 normal knees in full extension. Two types of virtual triple bundle ACL grafts (VACLG) were created.
Purpose: Defining a microscopic tumor infiltration boundary is critical to the success of radiation therapy. Currently, radiation oncologists use margins to geometrically expand the visible tumor for radiation treatment planning in soft tissue sarcomas (STS). Image-based models of tumor progression would be critical to personalize the treatment radiation field to the pattern of sarcoma spread.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Electronic address:
Background: The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!