Mapping global soil acidification under N deposition.

Glob Chang Biol

Faculty of Natural Resources Management, Lakehead University, Ontario, Thunder Bay, Canada.

Published: August 2023

Soil pH is critically important in regulating soil nutrients and thus influencing the biodiversity and ecosystem functions of terrestrial ecosystems. Despite the ongoing threat of nitrogen (N) pollution especially in the fast-developing regions, it remains unclear how increasing N deposition affects soil pH across global terrestrial ecosystems. By conducting a global meta-analysis with paired observations of soil pH under N addition and control from 634 studies spanning major types of terrestrial ecosystems, we show that soil acidification increases rapidly with N addition amount and is most severe in neutral-pH soils. Grassland soil pH decreases most strongly under high N addition while wetlands are the least acidified. By extrapolating these relationships to global mapping, we reveal that atmospheric N deposition leads to a global average soil pH decline of -0.16 in the past 40 years and regions encompassing Eastern United States, Southern Brazil, Europe, and South and East Asia are the hotspots of soil acidification under N deposition. Our results highlight that anthropogenically amplified atmospheric N deposition has profoundly altered global soil pH and chemistry. They suggest that atmospheric N deposition is a major threat to global terrestrial biodiversity and ecosystem functions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.16813DOI Listing

Publication Analysis

Top Keywords

soil acidification
12
terrestrial ecosystems
12
atmospheric deposition
12
soil
10
global soil
8
acidification deposition
8
deposition soil
8
biodiversity ecosystem
8
ecosystem functions
8
global terrestrial
8

Similar Publications

Screening and identification of two novel phosphate-solubilizing strains and their role in enhancing phosphorus uptake in rice.

Front Microbiol

January 2025

Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.

Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.

View Article and Find Full Text PDF

Periweissella beninensis LMG 25373, belonging to the recently established Periweissella genus, exhibits unique motility and high adhesion capabilities, indicating significant probiotic potential, including resilience under simulated gastrointestinal conditions. This study demonstrates for the first time that P. beninensis LMG 25373^T produces a dextran-type exopolysaccharide (EPS) with a distinctive high degree of branching (approximately 71 % of α-(1 → 6)-linkages and 29 % α-(1 → 3)-linkages).

View Article and Find Full Text PDF

Composition and the predicted functions of fungal communities and the key drivers in acidic soils of Jiaodong Peninsula, China.

Front Microbiol

January 2025

Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.

Introduction: Soil acidification imperils soil health and hinders the agricultural sustainability. As being more tolerant than bacteria to soil acidification, so it would be more meaningful for agricultural management and crop yield to characterize fungal community in acidic soils and manifest its key drivers.

Method: This study investigated the composition and diversity of fungal communities and its key driving factors by collecting 90 soil samples from the acidic region of Jiaodong Peninsula China, spanning 3 × 10 km.

View Article and Find Full Text PDF

Continuous cropping problems constitute threats to perennial plant health and survival. Soil conditioners have the potential to enhance plant disease resistance in continuous cropping systems. However, how microbes and metabolites of the rhizosphere respond to soil conditioner addition remains largely unknown, but this knowledge is paramount to providing innovative strategies to enhance plant adaptation in continuous cropping systems.

View Article and Find Full Text PDF

Acidic stability and mechanisms of soil cadmium immobilization by layered double hydroxides intercalated with mercaptosuccinic acid.

Environ Res

January 2025

State Key Laboratory of Soil & Sustainable Agriculture, Institute of soil science, Chinese academy of sciences, Nanjing, 211135, China. Electronic address:

Layered double hydroxide intercalated with mercaptosuccinic acid (MSA-CFA) holds considerable promise for remediating cadmium (Cd)-contaminated soils through selective immobilization; however, its stability under acidic conditions has yet to be investigated. The acidic stability of MSA-CFA was investigated by acid stability investigation and simulated soil acidification. In the immersion test, the cadmium dissolution rate (DR) for the Cd immobilized products of MSA-CFA (MSA-CFA-Cd) was significantly lower (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!