Natural TEMPO oxidized cellulose nano fiber/alginate/dSECM hybrid aerogel with improved wound healing and hemostatic ability.

Int J Biol Macromol

Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea; Department of Regenerative Medicine, College of Medicine, Soonchunhyang University,Cheonan, South Korea. Electronic address:

Published: July 2023

Natural biopolymers have attracted considerable attention in a variety of biomedical applications. Herein, tempo-oxidized-cellulose nanofibers (T) were incorporated into sodium alginate/chitosan (A/C) to reinforce the physicochemical properties and further modified with decellularized skin extracellular matrix (E). A unique ACTE aerogel was successfully prepared, and its nontoxic behavior was validated using mouse fibroblast L929 cells. In vitro hemolysis results revealed excellent platelet adhesion and fibrin network formation abilities of the obtained aerogel. A high speed of homeostasis was attained based on the quick clotting in <60 s. Skin regeneration in vivo experiments were conducted using the ACT1E0 and ACT1E10 groups. In comparison to ACT1E0 samples, ACT1E10 samples demonstrated enhanced skin wound healing with increased neo-epithelialization, increased collagen deposition, and extracellular matrix remodeling. ACT1E10 was found to be a promising aerogel for skin defect regeneration due to its improved wound-healing ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.125226DOI Listing

Publication Analysis

Top Keywords

natural tempo
4
tempo oxidized
4
oxidized cellulose
4
cellulose nano
4
nano fiber/alginate/dsecm
4
fiber/alginate/dsecm hybrid
4
hybrid aerogel
4
aerogel improved
4
improved wound
4
wound healing
4

Similar Publications

The rhythm of horse gaits.

Ann N Y Acad Sci

December 2024

Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.

What makes animal gaits so audibly rhythmic? To answer this question, we recorded the footfall sound of 19 horses and quantified the rhythmic differences in the temporal structure of three natural gaits: walk, trot, and canter. Our analyses show that each gait displays a strikingly specific rhythmic pattern and that all gaits are organized according to small-integer ratios, those found when adjacent temporal intervals are related by a mathematically simple relationship of integer numbers. Walk and trot exhibit an isochronous structure (1:1)-similar to a ticking clock-while canter is characterized by three small-integer ratios (1:1, 1:2, 2:1).

View Article and Find Full Text PDF

Cellulose nanofibrils (CNFs) are advanced biomaterials valued for their strength, lightweight nature, and low thermal expansion, making them suitable for diverse industrial applications. However, their potential inhalation risks necessitate thorough safety evaluations. This study investigates the pulmonary inflammatory effects and retention of CNFs following intratracheal instillation in rats.

View Article and Find Full Text PDF

Aluminum oxide clusters (AlOCs) possess high surface areas and customizable pore structures, making them applicable in the field of environmental remediation. However, their practical use is hindered by stability issues, aggregation tendencies, and recycling challenges. This study presents an in -situ synthesis of AlOCs on cellulose using a solvent thermal method.

View Article and Find Full Text PDF

Pitch-induced illusory percepts of time.

Atten Percept Psychophys

December 2024

Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada.

Past research suggests that pitch height can influence the perceived tempo of speech and music, such that higher-pitched signals seem faster than lower-pitched ones. However, previous studies have analyzed perceived tempo across a relatively limited range of fundamental frequencies. To investigate whether this higher-equals-faster illusion generalizes across the wider range of human hearing, we conducted a series of five experiments.

View Article and Find Full Text PDF

This research elucidates the intricate nature of electronic coupling in the redox-active (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), commonly utilized in organic radical batteries. This study employs a combination of classical molecular dynamics and various electronic coupling calculation schemes. Within the context of the generalized Mulliken-Hush method, the electronic couplings are investigated via the complete active space self-consistent field approach, in combination with n-electron valence state perturbation theory, to provide an accurate description of both static and dynamic electron correlation as well as using (time-dependent) density functional theory simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!