The involvement of neutrophil extracellular traps (NETs) in cancer metastasis is being clarified, but the relationship between intrahepatic cholangiocarcinoma (iCCA) and NETs remains unclear. The presence of NETs was verified by multiple fluorescence staining in clinically resected specimens of iCCA. Human neutrophils were co-cultured with iCCA cells to observe NET induction and changes in cellular characteristics. Binding of platelets to iCCA cells and its mechanism were also examined, and their effects on NETs were analyzed in vitro and in in vivo mouse models. NETs were present in the tumor periphery of resected iCCAs. NETs promoted the motility and migration ability of iCCA cells in vitro. Although iCCA cells alone had a weak NET-inducing ability, the binding of platelets to iCCA cells via P-selectin promoted NET induction. Based on these results, antiplatelet drugs were applied to these cocultures in vitro and inhibited the binding of platelets to iCCA cells and the induction of NETs. Fluorescently labeled iCCA cells were injected into the spleen of mice, resulting in the formation of liver micrometastases coexisting with platelets and NETs. These mice were treated with dual antiplatelet therapy (DAPT) consisting of aspirin and ticagrelor, which dramatically reduced micrometastases. These results suggest that potent antiplatelet therapy prevents micrometastases of iCCA cells by inhibiting platelet activation and NET production, and it may contribute to a novel therapeutic strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2023.216260DOI Listing

Publication Analysis

Top Keywords

icca cells
32
antiplatelet therapy
12
binding platelets
12
platelets icca
12
icca
10
dual antiplatelet
8
neutrophil extracellular
8
extracellular traps
8
liver micrometastases
8
intrahepatic cholangiocarcinoma
8

Similar Publications

Background: Due to malnutrition and tumor cachexia, body composition (BC) is frequently altered and known to adversely affect short- and long-term results in patients with cholangiocarcinoma (CCA). Here, we explored immune cell populations in the tumor and liver of CCA patients with respect to BC.

Methods: A cohort of 96 patients who underwent surgery for CCA was investigated by multiplexed immunofluorescence (MIF) techniques with computer-based analysis on whole-tissue slide scans to quantify and characterize immune cells in normal liver and tumor regions.

View Article and Find Full Text PDF

Aims: Anti-claudin-18.2 (CLDN18.2) therapy was recently approved for the treatment of gastric or gastro-oesophageal junction adenocarcinoma.

View Article and Find Full Text PDF

Background & Aims: GD2, a member of the ganglioside (GS) family (sialic acid-containing glycosphingolipids), is a potential biomarker of cancer stem cells (CSC) in several tumours. However, the possible role of GD2 and its biosynthetic enzyme, GD3 synthase (GD3S), in intrahepatic cholangiocarcinoma (iCCA) has not been explored.

Methods: The stem-like subset of two iCCA cell lines was enriched by sphere culture (SPH) and compared to monolayer parental cells (MON).

View Article and Find Full Text PDF

Objective: Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA.

View Article and Find Full Text PDF

Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a leading cause of cancer-related death worldwide. Chronic liver diseases, such as hepatitis B and C infections and metabolic dysfunction-associated steatotic liver disease (MASLD), are key risk factors for PLC. Metabolic reprogramming, a defining feature of cancer, enables liver cancer cells to adapt to the demands of rapid proliferation and the challenging tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!