A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A deep learning approach for radiological detection and classification of radicular cysts and periapical granulomas. | LitMetric

A deep learning approach for radiological detection and classification of radicular cysts and periapical granulomas.

J Dent

Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000, Belgium; OMFS-IMPATH Research Group, Department of Imaging and Pathology, Catholic University Leuven, Belgium; Department of Dentistry, Karolinska Institutet, Stockholm, Sweden. Electronic address:

Published: August 2023

Objectives: Dentists and oral surgeons often face difficulties distinguishing between radicular cysts and periapical granulomas on panoramic imaging. Radicular cysts require surgical removal while root canal treatment is the first-line treatment for periapical granulomas. Therefore, an automated tool to aid clinical decision making is needed.

Methods: A deep learning framework was developed using panoramic images of 80 radicular cysts and 72 periapical granulomas located in the mandible. Additionally, 197 normal images and 58 images with other radiolucent lesions were selected to improve model robustness. The images were cropped into global (affected half of the mandible) and local images (only the lesion) and then the dataset was split into 90% training and 10% testing sets. Data augmentation was performed on the training dataset. A two-route convolutional neural network using the global and local images was constructed for lesion classification. These outputs were concatenated into the object detection network for lesion localization.

Results: The classification network achieved a sensitivity of 1.00 (95% C.I. 0.63-1.00), specificity of 0.95 (0.86-0.99), and AUC (area under the receiver-operating characteristic curve) of 0.97 for radicular cysts and a sensitivity of 0.77 (0.46-0.95), specificity of 1.00 (0.93-1.00), and AUC of 0.88 for periapical granulomas. Average precision for the localization network was 0.83 for radicular cysts and 0.74 for periapical granulomas.

Conclusions: The proposed model demonstrated reliable diagnostic performance for the detection and differentiation of radicular cysts and periapical granulomas. Using deep learning, diagnostic efficacy can be enhanced leading to a more efficient referral strategy and subsequent treatment efficacy.

Clinical Significance: A two-route deep learning approach using global and local images can reliably differentiate between radicular cysts and periapical granulomas on panoramic imaging. Concatenating its output to a localizing network creates a clinically usable workflow for classifying and localizing these lesions, enhancing treatment and referral practices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2023.104581DOI Listing

Publication Analysis

Top Keywords

radicular cysts
32
periapical granulomas
28
cysts periapical
20
deep learning
16
local images
12
learning approach
8
radicular
8
cysts
8
periapical
8
granulomas panoramic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!