A lack of knowledge about antimony (Sb) isotope fractionation mechanisms in key geochemical processes has limited its environmental applications as a tracer. Naturally widespread iron (Fe) (oxyhydr)oxides play a key role in Sb migration due to strong adsorption, but the behavior and mechanisms of Sb isotopic fractionation on Fe (oxyhydr)oxides are still unclear. Here, we investigate the adsorption mechanisms of Sb on ferrihydrite (Fh), goethite (Goe), and hematite (Hem) using extended X-ray absorption fine structure (EXAFS) and show that inner-sphere complexation of Sb species with Fe (oxyhydr)oxides occurs independent of pH and surface coverage. Lighter Sb isotopes are preferentially enriched on Fe (oxyhydr)oxides due to isotopic equilibrium fractionation, with neither surface coverage nor pH influencing the degree of fractionation (ΔSb). Limited Fe atoms are present in the second shell of Hem and Goe, resulting in weaker surface complexes and leading to greater Sb isotopic fractionation than with Fh (ΔSb of 0.49 ± 0.004, 1.12 ± 0.006, and 1.14 ± 0.05‰ for Fh, Hem, and Goe, respectively). These results improve the understanding of the mechanism of Sb adsorption by Fe (oxyhydr)oxides and further clarify the Sb isotope fractionation mechanism, providing an essential basis for future application of Sb isotopes in source and process tracing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c01906DOI Listing

Publication Analysis

Top Keywords

isotope fractionation
12
antimony isotope
8
adsorption oxyhydroxides
8
isotopic fractionation
8
surface coverage
8
fractionation Δsb
8
hem goe
8
fractionation
7
oxyhydroxides
6
fractionation revealed
4

Similar Publications

Aerosol ammonium (NH) is a critical component of particulate matter that affects air pollution, climate, and human health. Isotope-based source apportionment of NH is essential for ammonia (NH) mitigation but the role of kinetic vs equilibrium controls on nitrogen isotope (δN) fractionation between NH and NH remains unresolved. Based on concurrent measurements of NH and NH in winter Beijing, we observed that the difference of δN between NH and NH on clean days (3.

View Article and Find Full Text PDF

Carbon, hydrogen, nitrogen and chlorine isotope fractionation during 3-chloroaniline transformation in aqueous environments by direct photolysis, TiO photocatalysis and hydrolysis.

Water Res

December 2024

School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:

This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.

View Article and Find Full Text PDF

Background: In radioembolization therapy for hepatic malignancies, the accurate estimation of lung shunt fraction (LSF) is crucial to minimize the risk of radiation-induced pneumonitis and fibrosis due to hepatopulmonary shunting of yttrium-90 (90Y)-microspheres. This study aimed to compare the accuracy and precision of LSF estimation using technetium-99m macroaggregated albumin single photon emission computed tomography ([99mTc]Tc-MAA SPECT) LSF, [99mTc]Tc-MAA planar LSF, and 90Y PET LSF in patients undergoing 90Y-radioembolization.

Material And Methods: A retrospective study was conducted involving 15 patients diagnosed with hepatocellular carcinoma (HCC) or liver metastases and planned to undergo transarterial radioembolization with 90Y SirSpheres after multidisplinary team discussion.

View Article and Find Full Text PDF

Deciphering the mineral code of urinary stones: A first look at zinc isotopes.

Environ Pollut

December 2024

Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wrexham, LL13 9XS, United Kingdom.

Zinc (Zn) is an essential element for all living organisms, and Zn isotopes play a key role in studying the formation of disease. Despite extensive studies on Zn isotopes in healthy and diseased human tissues, the role of Zn isotopes in urinary stones remains unexplored. This study investigates Zn isotopes in 37 urinary stones using multi-collector inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Coastal sediments are a key contributor to oceanic phosphorus (P) removal, impacting P bioavailability and primary productivity. Vivianite, an Fe(II)-phosphate mineral, can be a major P sink in nonsulfidic, reducing coastal sediments. Despite its importance, vivianite formation processes in sediments remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!