Bioimaging and detecting endogenous and exogenous cyanide in foods, living cells and mice based on a turn-on mitochondria-targeted fluorescent probe.

Spectrochim Acta A Mol Biomol Spectrosc

Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, 236037, PR China; College of Chemistry & Chemical Engineering, Fuyang Normal University, Fuyang, 236037, PR China. Electronic address:

Published: November 2023

A novel fluorescent probe, with advanced features including "turn-on" fluorescence response, high sensitivity, good compatibility, and mitochondria-targeting function, has been synthesized based on structural design for detecting and visualizing cyanide in foods and biological systems. An electron-donating triphenylamine group (TPA) was employed as the fluorescent and an electron-accepting 4-methyl-N-methyl-pyridinium iodide (Py) moiety was used as a mitochondria-targeted localization unit, which formed intramolecular charge transfer (ICT) system. The "turn-on" fluorescence response of the probe (TPA-BTD-Py, TBP) toward cyanide is attributed two reasons, one is the insertion of an electron-deficient benzothiadiazole (BTD) group into the conjugated system between TPA and Py, and the other is the inhibition of ICT induced by the nucleophilic addition of CN. Two active sites for reacting with CN were involved in TBP molecule and high response sensitivity were observed in tetrahydrofuran solvent containing 3 % HO. The response time could be reduced to 150 s, the linear range was 0.25-50 μM, and the limit of detection was 0.046 μM for CN analysis. The TBP probe was successfully applied to the detection of cyanide in food samples prepared in aqueous solution, including the sprouting potato, bitter almond, cassava, and apple seeds. Furthermore, TBP exhibited low cytotoxicity, clear mitochondria-localizing capability in HeLa cells and excellent fluorescence imaging of exogenous and endogenous CN in living PC12 cells. Moreover, exogenous CN with intraperitoneal injection in nude mice could be well monitored visually by the "turn-on" fluorescence. Therefore, the strategy based on structural design provided good prospects for optimizing fluorescent probes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.122957DOI Listing

Publication Analysis

Top Keywords

"turn-on" fluorescence
12
cyanide foods
8
fluorescent probe
8
fluorescence response
8
based structural
8
structural design
8
bioimaging detecting
4
detecting endogenous
4
endogenous exogenous
4
cyanide
4

Similar Publications

Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.

View Article and Find Full Text PDF

Rational Development of a Lipid Droplets and Hypochlorous Acid In-Sequence Responsive Fluorescent Probe for Accurate Imaging of Atherosclerotic Plaques.

Anal Chem

December 2024

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.

To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.

View Article and Find Full Text PDF

[Construction of a 17-estradiol sensor based on a magnetic graphene oxide/aptamer separating material].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.

View Article and Find Full Text PDF

Aggregation-induced emission(AIE)for next-generation biosensing and imaging: A review.

Biosens Bioelectron

December 2024

Department of Academic Research, Beijing Ditan Hospital, Capital Medical University, National Center for Infectious Diseases, 8th Jingshun East Road, Beijing, 100015, China. Electronic address:

Luminescence technology is a powerful analytical tool for biomedical research as well as for marker detection. Luminescent materials with aggregation-induced emission (AIE) properties have attracted extensive research interest, and their unique luminescence characteristics, biocompatibility, and sensitivity make them useful for the development of fluorescence-turn-on biosensors with superior sensitivity. While numerous reviews have focused on the design of AIEgens, comprehensive summaries on the strategies for biosensor preparation and application fields remain limited.

View Article and Find Full Text PDF

A highly-sensitive fluorescent probe for the detection of copper ions and its applications in water quality monitoring, neural cell imaging and plant imaging.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

High copper levels pose a risk to environmental and human health due to their toxicity and widespread industrial application, in which abnormal copper levels are associated with various diseases both in neurodegenerative diseases and plant growth. Thus, a turn-on fluorescent probe BBYD-Cu, based on donor-acceptor type structure, was designed and synthesized with easy preparations. BBYD-Cu can specifically recognized Cu by 2-picolinic ester group, then released the fluorophore to enhance the fluorescent signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!