A novel fluorescent probe, with advanced features including "turn-on" fluorescence response, high sensitivity, good compatibility, and mitochondria-targeting function, has been synthesized based on structural design for detecting and visualizing cyanide in foods and biological systems. An electron-donating triphenylamine group (TPA) was employed as the fluorescent and an electron-accepting 4-methyl-N-methyl-pyridinium iodide (Py) moiety was used as a mitochondria-targeted localization unit, which formed intramolecular charge transfer (ICT) system. The "turn-on" fluorescence response of the probe (TPA-BTD-Py, TBP) toward cyanide is attributed two reasons, one is the insertion of an electron-deficient benzothiadiazole (BTD) group into the conjugated system between TPA and Py, and the other is the inhibition of ICT induced by the nucleophilic addition of CN. Two active sites for reacting with CN were involved in TBP molecule and high response sensitivity were observed in tetrahydrofuran solvent containing 3 % HO. The response time could be reduced to 150 s, the linear range was 0.25-50 μM, and the limit of detection was 0.046 μM for CN analysis. The TBP probe was successfully applied to the detection of cyanide in food samples prepared in aqueous solution, including the sprouting potato, bitter almond, cassava, and apple seeds. Furthermore, TBP exhibited low cytotoxicity, clear mitochondria-localizing capability in HeLa cells and excellent fluorescence imaging of exogenous and endogenous CN in living PC12 cells. Moreover, exogenous CN with intraperitoneal injection in nude mice could be well monitored visually by the "turn-on" fluorescence. Therefore, the strategy based on structural design provided good prospects for optimizing fluorescent probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.122957 | DOI Listing |
ACS Appl Bio Mater
December 2024
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India.
Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.
View Article and Find Full Text PDFAnal Chem
December 2024
Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.
View Article and Find Full Text PDFSe Pu
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
17-Estradiol (E2) is a natural steroidal estrogen essential for a variety of physiological functions in organisms. However, external E2, which is renowned for its potent biological effects, is also considered to be an endocrine-disrupting compound (EDC) capable of disturbing the normal operation of the endocrine system, even at nanogram-per-liter (ng/L) concentrations. Studies have revealed that medical and livestock wastewater can be contaminated with E2, which poses potential risks to human health.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Academic Research, Beijing Ditan Hospital, Capital Medical University, National Center for Infectious Diseases, 8th Jingshun East Road, Beijing, 100015, China. Electronic address:
Luminescence technology is a powerful analytical tool for biomedical research as well as for marker detection. Luminescent materials with aggregation-induced emission (AIE) properties have attracted extensive research interest, and their unique luminescence characteristics, biocompatibility, and sensitivity make them useful for the development of fluorescence-turn-on biosensors with superior sensitivity. While numerous reviews have focused on the design of AIEgens, comprehensive summaries on the strategies for biosensor preparation and application fields remain limited.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
High copper levels pose a risk to environmental and human health due to their toxicity and widespread industrial application, in which abnormal copper levels are associated with various diseases both in neurodegenerative diseases and plant growth. Thus, a turn-on fluorescent probe BBYD-Cu, based on donor-acceptor type structure, was designed and synthesized with easy preparations. BBYD-Cu can specifically recognized Cu by 2-picolinic ester group, then released the fluorophore to enhance the fluorescent signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!