Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heavy metal contamination in the surface sediments of large shallow lakes in China is becoming increasingly serious. However, more attention has been paid to the human health risk of heavy metals in the past, while little consideration has been given to aquatic organisms. Taking Taihu Lake as an example, we explored the spatial and temporal heterogeneity of the potential ecological risks of seven heavy metals (Cd, As, Cu, Pb, Cr, Ni, and Zn) to species at different taxonomic scales using an improved species sensitivity distribution (SSD) method. The results showed that all six heavy metals, except Cr, were exceeded to some extent compared to background levels, with Cd being the most severe exceedance. Based on the hazardous concentration for 5% of the species (HC), Cd had the lowest HC value, implying the highest ecological risk of toxicity. Ni and Pb had the highest HC values and the lowest risk. Cu, Cr, As and Zn were at a relatively moderate levels. For the different groups of aquatic organisms, the ecological risk of most heavy metals was generally lower for vertebrates than for the whole species. The risk for invertebrates and algae was higher than that for all species. Zn and Cu had the highest potentially affected fractions (PAFs) for all classification cases, with mean PAFs of 30.25% and 47.2%, respectively. Spatially, the high ecological risk of sediment heavy metals was significantly related to the spatial characteristics of the type and intensity of human activities in the catchment. Administratively, the environmental quality standards for freshwater sediments proposed by America and Canada are insufficient to protected against the ecological risks of heavy metals in Taihu Lake. In the absence of such standards, China urgently needs to establish an approptiate system of environmental quality standards for heavy metals in lake sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118253 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!