Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: This study aimed to investigate the impact of automated vehicle (AV) interaction mode on drivers' trust and preferred driving styles in response to pedestrian- and traffic-related road events.
Background: The rising popularity of AVs highlights the need for a deeper understanding of the factors that influence trust in AV. Trust is a crucial element, particularly because current AVs are only partially automated and may require manual takeover; miscalibrated trust could have an adverse effect on safe driver-vehicle interaction. However, before attempting to calibrate trust, it is vital to comprehend the factors that contribute to trust in automation.
Methods: Thirty-six individuals participated in the experiment. Driving scenarios incorporated adaptive SAE Level 2 AV algorithms, driven by participants' event-based trust in AVs and preferences for AV driving styles. The study measured participants' trust, preferences, and the number of takeover behaviors.
Results: Higher levels of trust and preference for more aggressive AV driving styles were found in response to pedestrian-related events compared to traffic-related events. Furthermore, drivers preferred the trust-based adaptive mode and had fewer takeover behaviors than the preference-based adaptive and fixed modes. Lastly, participants with higher trust in AVs favored more aggressive driving styles and made fewer takeover attempts.
Conclusion: Adaptive AV interaction modes that depend on real-time event-based trust and event types may represent a promising approach to human-automation interaction in vehicles.
Application: Findings from this study can support future driver- and situation-aware AVs that can adapt their behavior for improved driver-vehicle interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00187208231181199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!