Theranostic Surrogacy of [I]NaI for Differentiated Thyroid Cancer Radionuclide Therapy.

Mol Pharm

Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam 13620, Korea.

Published: July 2023

Precise dosimetry has gained interest for interpreting the response assessments of novel therapeutic radiopharmaceuticals, as well as for improving conventional radiotherapies such as the "one dose fits all" approach. Although radioiodine as same-element isotope theranostic pairs has been used for differentiated thyroid cancer (DTC), there are insufficient studies on the determination of its dosing regimen for personalized medicine and on extrapolating strategies for companion diagnostic radiopharmaceuticals. In this study, DTC xenograft mouse models were generated after validating iodine uptakes sodium iodine symporter proteins (NIS) through assays, and theranostic surrogacy of companion radiopharmaceuticals was investigated in terms of single photon emission computed tomography (SPECT) imaging and voxel-level dosimetry. Following a Monte Carlo simulation, the hypothetical energy deposition/dose distribution images were produced as [I]NaI SPECT scans with the use of I ion source simulation, and dose rate curves were used to estimate absorbed dose. For the tumor, a peak concentration of 96.49 ± 11.66% ID/g occurred 2.91 ± 0.42 h after [I]NaI injection, and absorbed dose for I therapy was estimated as 0.0344 ± 0.0088 Gy/MBq. The absorbed dose in target/off-target tissues was estimated by considering subject-specific heterogeneous tissue compositions and activity distributions. Furthermore, a novel approach was proposed for simplifying voxel-level dosimetry and suggested for determining the minimal/optimal scan time points of surrogates for pretherapeutic dosimetry. When two scan time points were set to and 26 h and the group mean half-lives were applied to the dose rate curves, the most accurate absorbed dose estimates were determined [-22.96, 2.21%]. This study provided an experimental basis to evaluate dose distribution and is expected hopefully to improve the challenging dosimetry process for clinical use.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00073DOI Listing

Publication Analysis

Top Keywords

absorbed dose
16
theranostic surrogacy
8
differentiated thyroid
8
thyroid cancer
8
dose
8
voxel-level dosimetry
8
dose rate
8
rate curves
8
scan time
8
time points
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!