Aims: To define a stepwise application of left bundle branch pacing (LBBP) criteria that will simplify implantation and guarantee electrical resynchronization. Left bundle branch pacing has emerged as an alternative to biventricular pacing. However, a systematic stepwise criterion to ensure electrical resynchronization is lacking.
Methods And Results: A cohort of 24 patients from the LEVEL-AT trial (NCT04054895) who received LBBP and had electrocardiographic imaging (ECGI) at 45 days post-implant were included. The usefulness of ECG- and electrogram-based criteria to predict accurate electrical resynchronization with LBBP were analyzed. A two-step approach was developed. The gold standard used to confirm resynchronization was the change in ventricular activation pattern and shortening in left ventricular activation time, assessed by ECGI. Twenty-two (91.6%) patients showed electrical resynchronization on ECGI. All patients fulfilled pre-screwing requisites: lead in septal position in left-oblique projection and W paced morphology in V1. In the first step, presence of either right bundle branch conduction delay pattern (qR or rSR in V1) or left bundle branch capture Plus (QRS ≤120 ms) resulted in 95% sensitivity and 100% specificity to predict LBBP resynchronization, with an accuracy of 95.8%. In the second step, the presence of selective capture (100% specificity, only 41% sensitivity) or a spike-R <80 ms in non-selective capture (100% specificity, sensitivity 46%) ensured 100% accuracy to predict resynchronization with LBBP.
Conclusion: Stepwise application of ECG and electrogram criteria may provide an accurate assessment of electrical resynchronization with LBBP (Graphical abstract).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254073 | PMC |
http://dx.doi.org/10.1093/europace/euad128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!