A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4Tnni1 MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11684-023-0987-9 | DOI Listing |
Cells
December 2024
University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia.
Extracellular nanoparticles (EPs) are a subject of increasing interest for their biological role as mediators in cell-cell communication; however, their harvesting and assessment from bodily fluids are challenging, as processing can significantly affect samples. With the aim of minimizing processing artifacts, we assessed the number density () and hydrodynamic diameter () of EPs directly in diluted plasma and blood using the following recently developed technique: interferometric light microscopy (ILM). We analyzed 613 blood and plasma samples from human patients with inflammatory bowel disease (IBD), collected in trisodium citrate and ethylenediaminetetraacetic acid (EDTA) anticoagulants, and 163 blood and plasma samples from canine patients with brachycephalic obstructive airway syndrome (BOAS).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.
View Article and Find Full Text PDFMol Cells
December 2024
Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Woo Choo Lee Institute for Precision Drug Development, Seoul 03722, Republic of Korea. Electronic address:
Plasma membrane proteins are crucial for signal transduction, trafficking, and cell-cell interactions, all of which are vital for cell survival. These proteins, including G-protein coupled receptors (GPCRs), ion channels, transporters, and receptors, are key drug targets due to their central role in receiving and amplifying cellular signals. However, the isolation and purification of plasma membrane proteins pose significant challenges because of their integration with phospholipid bilayers and the small fraction of these proteins present in the plasma membrane.
View Article and Find Full Text PDFPhys Rev E
November 2024
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
Wound healing is a complex biological process critical for maintaining an organism's structural integrity and tissue repair following an infection or injury. Recent studies have unveiled the mechanisms involving the coordination of biochemical and mechanical responses in the tissue in wound healing. In this article, we focus on the healing property of an epithelial tissue as a material while the effects of biological mechanisms such as cell proliferation, tissue intercalation, cellular migration, cell crawling, and filopodia protrusion is minimal.
View Article and Find Full Text PDFJ Vis Exp
November 2024
Translational Medicine Laboratory, Biomedical Research and Innovation Centre, University of Salford;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!