Maternal separation and its developmental consequences on anxiety and parvalbumin interneurons in the amygdala.

J Neural Transm (Vienna)

Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

Published: September 2023

AI Article Synopsis

  • The early postnatal period is crucial for brain development, and stress during this time can lead to neurobiological changes and increased risk for anxiety and depression later in life.
  • The study used maternal separation (MS) in rats to mimic early life stress and found that it led to increased anxiety behavior in different tests during adolescence and adulthood, with no significant sex differences observed.
  • Additionally, MS was linked to changes in the number of parvalbumin-positive interneurons in the amygdala, suggesting that early stress has lasting effects on brain structure and behavior, which may evolve as the animal matures.

Article Abstract

The early postnatal period represents an exceptionally vulnerable phase for the development of neurobiological alterations, aberrant behavior, and psychiatric disorders. Altered GABAergic activity in the hippocampus and the amygdala have been identified in humans diagnosed with depression or anxiety disorders, as well as in respective animal models. Changes in GABAergic activity can be visualized by immunohistochemical staining of parvalbumin (PV) protein. Therewith, alterations in PV intensity as well as in the integrity of the perineural net surrounding PV positive (PV+) interneurons have been reported as consequences of early stress. In the current study, maternal separation (MS) was used to induce early life stress. Female and male Sprague-Dawley rats were subjected to MS over 4 h from postnatal days 2-20. Then, anxiety behavior and PV+ interneurons in the amygdala were analyzed using immunohistochemistry in adolescence or adulthood. MS induced increased anxiety behavior in the marble-burying test in adolescence as well as in the elevated plus maze in adulthood. No effect of sex was found. Concerning alterations of parvalbumin expression in the amygdala, a trend towards a lower number of parvalbumin-positive inhibitory interneurons was shown in the amygdala after MS in adolescence, with no differences in the total number of cells. The current study offers a developmental perspective, suggesting that the kind of anxiety behavior expressed by rats following MS changes over time from active to passive avoidance, indicating that effects of MS are highly dependent on developmental state. Moreover, a cell-type-specific effect of MS on the cellular composition of the amygdala is discussed. The presented study demonstrates the long-lasting consequences of early stress on behavior, offers a possible neurobiological correlate, and discusses possible mediators in the development of these alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460741PMC
http://dx.doi.org/10.1007/s00702-023-02657-yDOI Listing

Publication Analysis

Top Keywords

interneurons amygdala
12
anxiety behavior
12
maternal separation
8
gabaergic activity
8
pv+ interneurons
8
consequences early
8
early stress
8
current study
8
amygdala
6
anxiety
5

Similar Publications

A Comprehensive Stereology Method for Quantitative Evaluation of Neuronal Injury, Neurodegeneration, and Neurogenesis in Brain Disorders.

Curr Protoc

December 2024

Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas.

Neuronal injury, neurodegeneration, and neuroanatomical changes are key pathological features of various neurological disorders, including epilepsy, stroke, traumatic brain injury, Parkinson's disease, autism, and Alzheimer's disease. Accurate quantification of neurons and interneurons in different brain regions is critical for understanding the progression of neurodegenerative disorders in animal models. Traditional scoring methods are often superficial, biased, and unreliable for evaluating neuropathology.

View Article and Find Full Text PDF

While the basolateral amygdala (BLA) is critical in the consolidation of emotional memories, mechanisms underlying memory consolidation in this region are not well understood. In the hippocampus, memory consolidation depends upon network signatures termed sharp wave ripples (SWR). These SWRs largely occur during states of awake rest or slow wave sleep and are inversely correlated with cholinergic tone.

View Article and Find Full Text PDF

Regulation of CeA-Vme projection in masseter hyperactivity caused by restraint stress.

Front Cell Neurosci

November 2024

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regneration, Department of General Dentistry and Emergency, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China.

The overactivity of the masticatory muscles (bruxism or teeth clenching) is associated with stress exposure, and often leading to consistent muscle pain. However, the neural mechanism underlining it is not fully understood. The central amygdala (CeA), which is linked to stress-induced behaviors and physical reactions, projects directly to the mesencephalic trigeminal nucleus (Vme), which is crucial for oral-motor coordination.

View Article and Find Full Text PDF

Natural rewards like regular sucrose consumption can buffer physiological and behavioral stress responses, likely mediated, at least in part, by increased plasticity in parvalbumin-positive (PV+) interneurons in the basolateral amygdala (BLA). As PV+ interneuron plasticity is tightly regulated by specialized extracellular matrix structures called perineuronal nets (PNNs), this study investigated the impact of regular sucrose consumption vs. repetitive stress on the PNNs that surround PV+ interneurons in the BLA, as well as the number of glutamatergic (vGLUT1) and GABAergic (vGAT) appositions that PV+ cells receive.

View Article and Find Full Text PDF

Response of parvalbumin interneurons and perineuronal nets in rat medial prefrontal cortex and lateral amygdala to stressor controllability.

Brain Res

November 2024

R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97232, United States; Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Program in Neuroscience, Washington State University, Vancouver, WA 98686, United States. Electronic address:

Behavioral control over a stressor limits the impact of the stressor being experienced and produces enduring changes that reduce the effects of future stressors. In rats, these stress-buffering effects of control (escapable stress, ES) require activation of the medial prefrontal cortex (mPFC) and prevent the typical amygdala-dependent behavioral outcomes of uncontrollable stress (inescapable stress, IS). Parvalbumin (PV) interneurons regulate output of excitatory neurons, and most mPFC PV neurons are surrounded by perineuronal nets (PNNs), which regulate firing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!