Serine protease inhibitor Kazal type 13 (SPINK13) is a secreted protein that has been recently studied as a therapeutic drug and an interesting biomarker for cancer cells. Although SPINK13 has a consensus sequence (Pro-Asn-Val-Thr) for N-glycosylation, the existence of N-glycosylation and its functions are still unclear. In addition to this, the preparation of glycosylated SPINK 13 has not been examined by both the cell expression method and chemical synthesis. Herein we report the chemical synthesis of the scarce N-glycosylated form of SPINK13 by a rapid synthetic method combined with the chemical glycan insertion strategy and a fast-flow SPPS method. Glycosylated asparagine thioacid was designed to chemoselectively be inserted between two peptide segments where is the sterically bulky Pro-Asn(N-glycan)-Val junction by two coupling reactions which consist of diacyl disulfide coupling (DDC) and thioacid capture ligation (TCL). This insertion strategy successfully afforded the full-length polypeptide of SPINK13 within two steps from glycosylated asparagine thioacid. Because the two peptides used for this synthesis were prepared by a fast-flow SPPS, the total synthetic time of glycoprotein was considerably shortened. This synthetic concept enables us to repetitively synthesize a target glycoprotein easily. Folding experiments afforded well-folded structure confirmed by CD and disulfide bond map. Invasion assays of glycosylated SPINK13 and non-glycosylated SPINK13 with pancreatic cancer cells showed that non-glycosylated SPINK-13 was more potent than that of glycosylated SPINK13.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202300646 | DOI Listing |
Methods Mol Biol
December 2024
Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany.
Photocaged compounds are chemical conjugates that are designed to release an active molecule upon exposure to light of a specific wavelength. In recent years, photocaged inducer molecules such as caged isopropyl β-D-1-thiogalactopyranoside (cIPTG) have been increasingly used as a powerful tool for light-driven gene expression in bacteria, allowing researchers to precisely and noninvasively tune the expression of specific target genes. In this chapter, we present a guideline for the synthesis of 6-nitropiperonyl photocaged IPTG (NP-cIPTG) as well as its in vivo application as an optochemical on-switch of gene transcription in Escherichia coli and other bacteria.
View Article and Find Full Text PDFJ Org Chem
December 2024
College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
In this work, a switchable synthesis of β-ketosulfone and α-chloroketone through a radical difunctionalization of alkenes is reported. The transformation works well under iron peroxo species/photoredox dual catalysis and an open-flask atmosphere, and the reaction is highlighted with good yields and a broad reaction scope. Mechanism studies show that the reaction is initiated by a formal [4 + 2] cyclization of the sulfonyl radical in a regioselective manner.
View Article and Find Full Text PDFInorg Chem
December 2024
Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
Metal complexes with tunable ligands play a crucial role in olefin polymerization and impart control over molecular weight, crystallinity, and stereoregularity. We report the single-step synthesis of imine-phenoxy ligands in excellent yields (81-93%). The identity of electronically tuned imine-phenoxy ligands was unambiguously ascertained by using a combination of spectroscopic and analytical methods.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
The γ-butyrolactone scaffold, commonly present in natural products and bioactive compounds, has played a crucial role in the development of novel pesticides. In this study, a series of α-methylene-γ-butyrolactone derivatives containing a diphenyl ether moiety were designed and synthesized using the scaffold splicing strategy. Bioassays revealed that several target compounds demonstrated potent fungicidal activities, particularly against and .
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China.
Nanoscale metals have emerged as crucial materials for conductive inks in printed electronics due to their unique physical and chemical properties. However, the synthesis of high-precision and highly conductive copper ink remains a challenge. Herein, a high-precision, highly conductive, and oxidation-resistant nanocopper ink was synthesized to fabricate highly conductive and flexible printed electronic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!