Inhibitors of Aspartate Transcarbamoylase Inhibit Mycobacterium tuberculosis Growth.

ChemMedChem

XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9700AV (The, Netherlands.

Published: September 2023

Aspartate transcarbamoylase (ATCase) plays a key role in the second step of de novo pyrimidine biosynthesis in eukaryotes and has been proposed to be a target to suppress cell proliferation in E. coli, human cells and the malarial parasite. We hypothesized that a library of ATCase inhibitors developed for malarial ATCase (PfATCase) may also contain inhibitors of the tubercular ATCase and provide a similar inhibition of cellular proliferation. Of the 70 compounds screened, 10 showed single-digit micromolar inhibition in an in vitro activity assay and were tested for their effect on M. tuberculosis cell growth in culture. The most promising compound demonstrated a MIC of 4 μM. A model of MtbATCase was generated using the experimental coordinates of PfATCase. In silico docking experiments showed this compound can occupy a similar allosteric pocket on MtbATCase to that seen on PfATCase, explaining the observed species selectivity seen for this compound series.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202300279DOI Listing

Publication Analysis

Top Keywords

aspartate transcarbamoylase
8
inhibitors aspartate
4
transcarbamoylase inhibit
4
inhibit mycobacterium
4
mycobacterium tuberculosis
4
tuberculosis growth
4
growth aspartate
4
atcase
4
transcarbamoylase atcase
4
atcase plays
4

Similar Publications

Discovered nearly 70 years ago, the allosteric regulation of aspartate transcarbamoylase (ATCase) is discussed in every biochemistry textbook. ATCase catalyzes the first step in pyrimidine biosynthesis. Despite extensive research, the mechanism by which this enzyme is regulated by pyrimidine and purine nucleotides has remained elusive.

View Article and Find Full Text PDF

Pyrimidine Nucleotide Biosynthesis and Regulation in Pseudomonas lemonnieri.

Curr Microbiol

November 2024

Department of Chemistry, Texas A&M University, Commerce, TX, 75429, USA.

Article Synopsis
  • The study investigates the regulation of the pyrimidine biosynthetic pathway in Pseudomonas lemonnieri, a bacterium known for producing a commercially valuable blue pigment.
  • It was found that the addition of pyrimidine bases impacted the biosynthetic enzymes differently based on the carbon source, with glucose and succinate yielding varying effects on enzyme activity.
  • A mutant strain was identified that lacked OMP decarboxylase activity and could utilize alternative pyrimidine sources, revealing important insights into the influence of carbon sources on enzyme regulation and the genetic relationships within the Pseudomonas genus.
View Article and Find Full Text PDF

Disruption of CAD Oligomerization by Pathogenic Variants.

J Mol Biol

December 2024

Structure of Macromolecular Targets Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, Eduardo Primo Yúfera, 3, 46012 Valencia, Spain; Group CB06/07/0077 Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER-ISCIII, Monforte de Lemos 3-5, 28029 Madrid, Spain; Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the Instituto de Biomedicina de Valencia (IBV), Eduardo Primo Yúfera, 3, 46012 Valencia, Spain. Electronic address:

CAD, the multi-enzymatic protein essential for initiating the de novo biosynthesis of pyrimidine nucleotides, forms large hexamers whose structure and function are not fully understood. Defects in CAD cause a severe neurometabolic disorder that is challenging to diagnose. We developed a cellular functional assay to identify defective CAD variants, and in this study, we characterized five pathogenic missense mutations in CAD's dihydroorotase (DHO) and aspartate transcarbamoylase (ATC) domains.

View Article and Find Full Text PDF

The emerging roles of glutamine amidotransferases in metabolism and immune defense.

Nucleosides Nucleotides Nucleic Acids

November 2024

Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.

Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. arbamoyl-phosphate synthetase, spartate transcarbamoylase, and ihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis deamidating RelA.

View Article and Find Full Text PDF

Adolescent-onset epilepsy and deterioration associated with CAD deficiency: A case report.

Brain Dev

August 2024

Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan. Electronic address:

Introduction: CAD (MIM*114010) encodes a large multifunctional protein with the enzymatic activity of the first three enzymes initiating and controlling the de novo pyrimidine biosynthesis pathway. Biallelic pathogenic variants in CAD cause the autosomal recessive developmental and epileptic encephalopathy 50 (MIM #616457) or CAD deficiency presenting with epilepsy, status epilepticus (SE), neurological deterioration and anemia with anisopoikilocytosis. Mortality is around 9% of patients, mainly related to the no use of its specific treatment with uridine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!