A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quinoxalineimide-Based Semiconducting Polymer Nanoparticles as an Effective Phototheranostic for the Second Near-Infrared Fluorescence Imaging and Photothermal Therapy. | LitMetric

Quinoxalineimide-Based Semiconducting Polymer Nanoparticles as an Effective Phototheranostic for the Second Near-Infrared Fluorescence Imaging and Photothermal Therapy.

ACS Appl Mater Interfaces

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.

Published: June 2023

Multifunctional theranostics play a critical role in improving the efficacy of photothermal therapy and tumor fluorescence imaging; however, they require the integration of complex components into a single theranostic system, and their response in the second near-infrared (NIR-II) region is constrained by wavelengths of a photosensitizer. To address this issue, we herein developed a novel multifunctional thiazole-fused quinoxalineimide semiconducting polymer (named PQIA-BDTT), which exhibits NIR-II fluorescence and photothermal properties. PQIA-BDTT nanoparticles achieved an impressively high photothermal conversion efficiency (72.6%) in laser (1064 nm)-induced photothermal therapy at a safe maximum permissible exposure, demonstrating their capability as an effective photothermal agent. Moreover, PQIA-BDTT nanoparticles can be used as a reference for NIR-II fluorescence imaging under a low laser fluence. The tumor size and location in 4T1 mice intravenously injected with the PQIA-BDTT nanoparticles could be precisely identified through NIR-II fluorescence imaging, which also exhibited remarkable photothermal antitumor efficacy by and therapy. Overall, this study demonstrates that introducing a thiazole-fused quinoxalineimide acceptor unit into a donor-acceptor conjugated polymer is an effective strategy for the synthesis of novel multifunctional theranostic systems, which provides a novel platform for designing theranostic agents for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c06853DOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
16
photothermal therapy
12
nir-ii fluorescence
12
pqia-bdtt nanoparticles
12
semiconducting polymer
8
second near-infrared
8
novel multifunctional
8
thiazole-fused quinoxalineimide
8
photothermal
7
fluorescence
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!