Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multifunctional theranostics play a critical role in improving the efficacy of photothermal therapy and tumor fluorescence imaging; however, they require the integration of complex components into a single theranostic system, and their response in the second near-infrared (NIR-II) region is constrained by wavelengths of a photosensitizer. To address this issue, we herein developed a novel multifunctional thiazole-fused quinoxalineimide semiconducting polymer (named PQIA-BDTT), which exhibits NIR-II fluorescence and photothermal properties. PQIA-BDTT nanoparticles achieved an impressively high photothermal conversion efficiency (72.6%) in laser (1064 nm)-induced photothermal therapy at a safe maximum permissible exposure, demonstrating their capability as an effective photothermal agent. Moreover, PQIA-BDTT nanoparticles can be used as a reference for NIR-II fluorescence imaging under a low laser fluence. The tumor size and location in 4T1 mice intravenously injected with the PQIA-BDTT nanoparticles could be precisely identified through NIR-II fluorescence imaging, which also exhibited remarkable photothermal antitumor efficacy by and therapy. Overall, this study demonstrates that introducing a thiazole-fused quinoxalineimide acceptor unit into a donor-acceptor conjugated polymer is an effective strategy for the synthesis of novel multifunctional theranostic systems, which provides a novel platform for designing theranostic agents for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c06853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!