Development of an Antibody-Based Platform for the Analysis of Immune Cell-Specific N-linked Glycosylation.

Anal Chem

Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Basic Science Building Room 310, 173 Ashley Avenue, Charleston, South Carolina 29425, United States.

Published: July 2023

N-linked glycosylation plays an important role in both the innate and adaptive immune response through the modulation of cell surface receptors as well as general cell-to-cell interactions. The study of immune cell N-glycosylation is gaining interest but is hindered by the complexity of cell-type-specific N-glycan analysis. Analytical techniques such as chromatography, LC-MS/MS, and the use of lectins are all currently used to analyze cellular glycosylation. Issues with these analytical techniques include poor throughput, which is often limited to a single sample at a time, lack of structural information, the need for a large amount of starting materials, and the requirement for cell purification, thereby reducing their feasibility for N-glycan study. Here, we report the development of a rapid antibody array-based approach for the capture of specific nonadherent immune cells coupled with MALDI-IMS to analyze cellular N-glycosylation. This workflow is adaptable to multiple N-glycan imaging approaches such as the removal or stabilization and derivatization of terminal sialic acid residues providing unique avenues of analysis that have otherwise not been explored in immune cell populations. The reproducibility, sensitivity, and versatility of this assay provide an invaluable tool for researchers and clinical applications, significantly expanding the field of glycoimmunology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988393PMC
http://dx.doi.org/10.1021/acs.analchem.3c00838DOI Listing

Publication Analysis

Top Keywords

n-linked glycosylation
8
immune cell
8
analytical techniques
8
analyze cellular
8
immune
5
development antibody-based
4
antibody-based platform
4
platform analysis
4
analysis immune
4
immune cell-specific
4

Similar Publications

Gp70 is a cell wall protein required for adhesion, proper interaction with innate immune cells, and virulence.

Cell Surf

June 2025

Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico.

is one of the leading etiological agents of sporotrichosis, a cutaneous and subcutaneous mycosis worldwide distributed. This organism has been recently associated with epidemic outbreaks in Brazil. Despite the medical relevance of this species, little is known about its virulence factors, and most of the information on this subject is extrapolated from .

View Article and Find Full Text PDF

N-glycosylation of ephrin B1 modulates its function and confers therapeutic potential in B-cell lymphoma.

J Biol Chem

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, 210023, China. Electronic address:

Given the pivotal role of the Eph-Ephrin signaling pathway in tumor progression, agonists or antagonists targeting Eph/Ephrin have emerged as promising anticancer strategies. However, the implications of glycosylation modifications within Eph/Ephrin and their targeted protein therapeutics remain elusive. Here, we identify that N-glycosylation within the receptor-binding domain (RBD) of ephrin B1 (EFNB1) is indispensable for its functional repertoire.

View Article and Find Full Text PDF

The ongoing panzootic of highly pathogenic avian influenza (HPAI) A(H5) viruses is the largest in history, with unprecedented transmission to multiple mammalian species. Avian influenza A viruses of the H5 subtype circulate globally among birds and are classified into distinct clades based on their hemagglutinin (HA) genetic sequences. Thus, the ability to accurately and rapidly assign clades to newly sequenced isolates is key to surveillance and outbreak response.

View Article and Find Full Text PDF

Hereditary angioedema is an autosomal dominant disorder caused by defects in C1-esterase inhibitor (C1-INH), resulting in poorly controlled activation of the kallikrein-kinin system and bradykinin overproduction. C1-INH is a heavily glycosylated protein in the serine protease inhibitor (SERPIN) family, yet the role of these glycosylation sites remains unclear. To elucidate the functional impact of N-glycosylation in the SERPIN domain of C1-INH, we engineered four sets consisting of 26 variants at or near the N-linked sequon (NXS/T).

View Article and Find Full Text PDF

Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!