Organocatalytic enantioselective cross-aldol reaction of aryl ketones with heteroaromatic trifluoromethyl ketone hydrates for the synthesis of α-trifluoromethyl tertiary alcohols.

Org Biomol Chem

Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.

Published: June 2023

An efficient organocatalytic enantioselective cross-aldol reaction of aryl ketones with heteroaromatic trifluoromethyl ketone hydrates enolate intermediates has been developed. The cross-aldol reactions catalyzed by Takemoto-type thiourea catalysts proceeded well under mild conditions, furnishing a variety of enantioenriched α-trifluoromethyl tertiary alcohols bearing N-heteroaromatics with good to high yields and enantioselectivities. This protocol features broad substrate scope, good functional group tolerance, and easy gram-scale preparation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ob00619kDOI Listing

Publication Analysis

Top Keywords

organocatalytic enantioselective
8
enantioselective cross-aldol
8
cross-aldol reaction
8
reaction aryl
8
aryl ketones
8
ketones heteroaromatic
8
heteroaromatic trifluoromethyl
8
trifluoromethyl ketone
8
ketone hydrates
8
α-trifluoromethyl tertiary
8

Similar Publications

Neutral dual hydrogen bond donors (HBDs) are effective catalysts that enhance the electrophilicity of substrates or the Lewis/Brønsted acidity of reagents through an anion-binding mechanism. Despite their success in various enantioselective organocatalytic reactions, their application to transition metal catalysis remains rare. Herein, we report the activation of gold(I) precatalysts by chiral ureas, leading to enantioselective hydroarylation of allenes with indoles.

View Article and Find Full Text PDF

Herein, an organocatalytic asymmetric desymmetrizing [4+2] cycloaddition/base-mediated oxidative aromatization reaction sequence has been developed between spirophthalide 2,5-cyclohexadienones and β-methyl cinnamaldehydes. The reaction proceeds through chiral dienamine intermediate formation, and the densely functionalized spirocyclic isobenzofuranone-embedded chiral arenes were formed in high yields with excellent enantioselectivities. A 2-fold desymmetrization reaction was also performed, and the products were obtained in high enantioselectivities.

View Article and Find Full Text PDF

A highly regio-, enantio- and diastereo-selective strategy involving initial enantioselective conjugate addition to 4-nitro-5-styrylisoxazoles serves as a key step for the desymmetrization of 2,5-cyclohexadienones has been disclosed. We have designed a new class of 2,5-cyclohexadienones appended with 4-nitro-5-styrylisoxazoles to undergo organocatalytic asymmetric double or triple conjugate addition in a domino sequence depending on the substrate type leading to desymmetrization of the 2,5-cyclohexadienone core. The developed protocol allows the construction of a valuable hydrophenanthrene core or a unique bridged scaffold bearing multiple chiral centers with excellent enantio- (up to >99.

View Article and Find Full Text PDF

The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event.

View Article and Find Full Text PDF

Organocatalytic Enantioselective Arylation to Access Densely Aryl-Substituted P-Stereogenic Centers.

Org Lett

December 2024

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

Although methods for synthesizing chiral phosphorus scaffolds are available, the potential of this molecular chirality remains largely unexplored. Herein, we present a remote desymmetrization of prochiral biaryl phosphine oxides through an organocatalytic asymmetric arylation. This metal-free approach enables the efficient synthesis of a wide range of densely functionalized P(V)-stereogenic compounds with good to excellent yields and satisfactory enantioselectivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!