Transformer-based Deep Neural Network for Breast Cancer Classification on Digital Breast Tomosynthesis Images.

Radiol Artif Intell

From Lunit, 5F, 374 Gangnam-daero, Gangnam-gu, Seoul 06241, Republic of Korea.

Published: May 2023

Purpose: To develop an efficient deep neural network model that incorporates context from neighboring image sections to detect breast cancer on digital breast tomosynthesis (DBT) images.

Materials And Methods: The authors adopted a transformer architecture that analyzes neighboring sections of the DBT stack. The proposed method was compared with two baselines: an architecture based on three-dimensional (3D) convolutions and a two-dimensional model that analyzes each section individually. The models were trained with 5174 four-view DBT studies, validated with 1000 four-view DBT studies, and tested on 655 four-view DBT studies, which were retrospectively collected from nine institutions in the United States through an external entity. Methods were compared using area under the receiver operating characteristic curve (AUC), sensitivity at a fixed specificity, and specificity at a fixed sensitivity.

Results: On the test set of 655 DBT studies, both 3D models showed higher classification performance than did the per-section baseline model. The proposed transformer-based model showed a significant increase in AUC (0.88 vs 0.91, = .002), sensitivity (81.0% vs 87.7%, = .006), and specificity (80.5% vs 86.4%, < .001) at clinically relevant operating points when compared with the single-DBT-section baseline. The transformer-based model used only 25% of the number of floating-point operations per second used by the 3D convolution model while demonstrating similar classification performance.

Conclusion: A transformer-based deep neural network using data from neighboring sections improved breast cancer classification performance compared with a per-section baseline model and was more efficient than a model using 3D convolutions. Breast, Tomosynthesis, Diagnosis, Supervised Learning, Convolutional Neural Network (CNN), Digital Breast Tomosynthesis, Breast Cancer, Deep Neural Networks, Transformers © RSNA, 2023.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245183PMC
http://dx.doi.org/10.1148/ryai.220159DOI Listing

Publication Analysis

Top Keywords

deep neural
16
neural network
16
breast cancer
16
breast tomosynthesis
16
dbt studies
16
digital breast
12
four-view dbt
12
transformer-based deep
8
breast
8
cancer classification
8

Similar Publications

In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.

View Article and Find Full Text PDF

Intelligent Intrusion Detection System Against Various Attacks Based on a Hybrid Deep Learning Algorithm.

Sensors (Basel)

January 2025

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.

The Internet of Things (IoT) has emerged as a crucial element in everyday life. The IoT environment is currently facing significant security concerns due to the numerous problems related to its architecture and supporting technology. In order to guarantee the complete security of the IoT, it is important to deal with these challenges.

View Article and Find Full Text PDF

A Deep Learning Approach for Mental Fatigue State Assessment.

Sensors (Basel)

January 2025

Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing 100191, China.

This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.

View Article and Find Full Text PDF

Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM.

Sensors (Basel)

January 2025

School of Mechanical and Vehicle Engineering, Changchun University, Changchun 130022, China.

Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain.

View Article and Find Full Text PDF

With the proliferation of mobile terminals and the rapid growth of network applications, fine-grained traffic identification has become increasingly challenging. Methods based on machine learning and deep learning have achieved remarkable results, but they heavily rely on the distribution of training data, which makes them ineffective in handling unseen samples. In this paper, we propose AG-ZSL, a zero-shot learning framework based on traffic behavior and attribute representations for general encrypted traffic classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!