Background: Uterine Cervical Carcinoma (UCC) is the most prevalent gynecological malignancy globally, with a rising incidence in recent years. Accumulating evidence indicates that specific viral infections, including human papillomavirus (HPV), Epstein-Barr virus (EBV), Hepatitis B and C viruses (HBV and HCV), and human herpesvirus (HHV), may contribute to UCC development and progression. Understanding the complex interplay between viral infections and UCC risk is crucial for developing novel preventative and therapeutic interventions.
Methods: This comprehensive review investigates the association between viral infections and UCC risk by examining the roles of various viral pathogens in UCC etiology and pathogenesis, and possible molecular mechanisms. Additionally, we evaluate current diagnostic methods and potential therapeutic strategies targeting viral infections for UCC prevention or treatment.
Results: The prevention of UCC has been significantly advanced by the emergence of self-sampling for HPV testing as a crucial tool, allowing for early detection and intervention. However, an essential challenge in UCC prevention lies in understanding how HPV and other viral coinfections, including EBV, HBV, HCV, HHV, HIV, or their concurrent presence, may potentially contribute to UCC development. The molecular mechanisms implicated in the association between viral infections and cervical cancer development include: (1) interference of viral oncogenes with cellular regulatory proteins, resulting in uncontrolled cell proliferation and malignant transformation; (2) inactivation of tumor suppressor genes by viral proteins; (3) evasion of host immune responses by viruses; (4) induction of a persistent inflammatory response, contributing to a tumor-promoting microenvironment; (5) epigenetic modifications that lead to aberrant gene expression; (6) stimulation of angiogenesis by viruses; and (7) activation of telomerase by viral proteins, leading to cellular immortalization. Additionally, viral coinfections can also enhance oncogenic potential through synergistic interactions between viral oncoproteins, employ immune evasion strategies, contribute to chronic inflammation, modulate host cellular signaling pathways, and induce epigenetic alterations, ultimately leading to cervical carcinogenesis.
Conclusion: Recognizing the implications of viral oncogenes in UCC etiology and pathogenesis is vital for addressing the escalating burden of UCC. Developing innovative preventative and therapeutic interventions requires a thorough understanding of the intricate relationship between viral infections and UCC risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244558 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1194431 | DOI Listing |
Sci Rep
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.
View Article and Find Full Text PDFSci Rep
December 2024
Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, 11944, USA.
For over a century African swine fever (ASF) has been causing outbreaks leading to devastating losses for the swine industry. The current pandemic of ASF has shown no signs of stopping and continues to spread causing outbreaks in additional countries. Currently control relies mostly on culling infected farms, and strict biosecurity procedures.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.
View Article and Find Full Text PDFSci Rep
December 2024
Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco.
Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, GC University, Lahore, Pakistan.
In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!