Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Trees with weeping shoot architectures are valued for their beauty and serve as tremendous resources for understanding how plants regulate posture control. The (peach) weeping phenotype, which has elliptical downward arching branches, is caused by a homozygous mutation in the gene. Until now, little was known about the function of WEEP protein despite its high conservation throughout Plantae. Here, we present the results of anatomical, biochemical, biomechanical, physiological, and molecular experiments that provide insight into WEEP function. Our data suggest that weeping peach does not have defects in branch structure. Rather, transcriptomes from the adaxial (upper) and abaxial (lower) sides of standard and weeping branch shoot tips revealed flipped expression patterns for genes associated with early auxin response, tissue patterning, cell elongation, and tension wood development. This suggests that WEEP promotes polar auxin transport toward the lower side during shoot gravitropic response, leading to cell elongation and tension wood development. In addition, weeping peach trees exhibited steeper root systems and faster root gravitropic response, just as barley and wheat with mutations in their homolog . This suggests that the role of WEEP in regulating lateral organ angles and orientations during gravitropism may be conserved. Additionally, size-exclusion chromatography indicated that WEEP proteins self-oligomerize, like other SAM-domain proteins. This oligomerization may be required for WEEP to function in formation of protein complexes during auxin transport. Collectively, our results from weeping peach provide new insight into polar auxin transport mechanisms associated with gravitropism and lateral shoot and root orientation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245973 | PMC |
http://dx.doi.org/10.1101/2023.05.26.542472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!