Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly understood, therapeutic strategy remains unclear, and prognosis is poor. We performed multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. However, progressive acquisition of mutations is associated with increased expression of immunophenotypic markers of immaturity. Using SC transcriptional profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from other acute leukemias and indicative of high differentiation potential. Further, patients with the highest differentiation potential demonstrated inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA sequencing data and was predictive of survival in an independent patient cohort, suggesting utility for clinical risk stratification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245585PMC
http://dx.doi.org/10.1101/2023.05.15.540305DOI Listing

Publication Analysis

Top Keywords

multiomic single
8
single cell
8
mixed phenotype
8
phenotype acute
8
acute leukemia
8
risk stratification
8
differentiation potential
8
mpal
5
cell sequencing
4
sequencing identifies
4

Similar Publications

Single-cell sequencing in diabetic retinopathy: progress and prospects.

J Transl Med

January 2025

Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China.

Diabetic retinopathy is a major ocular complication of diabetes, characterized by progressive retinal microvascular damage and significant visual impairment in working-age adults. Traditional bulk RNA sequencing offers overall gene expression profiles but does not account for cellular heterogeneity. Single-cell RNA sequencing overcomes this limitation by providing transcriptomic data at the individual cell level and distinguishing novel cell subtypes, developmental trajectories, and intercellular communications.

View Article and Find Full Text PDF

Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review.

Biochim Biophys Acta Rev Cancer

January 2025

State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China. Electronic address:

Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC.

View Article and Find Full Text PDF

Replication timing (RT) allows us to analyze temporal patterns of genome-wide replication, i.e., if genes replicate early or late during the S-phase of the cell cycle.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!