A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vagus nerve stimulation rescues persistent pain following orthopedic surgery in adult mice. | LitMetric

Postoperative pain is a major clinical problem imposing a significant burden on our patients and society. Up to 57% of patients experience persistent postoperative pain 2 years after orthopedic surgery [49]. Although many studies have contributed to the neurobiological foundation of surgery-induced pain sensitization, we still lack safe and effective therapies to prevent the onset of persistent postoperative pain. We have established a clinically relevant orthopedic trauma model in mice that recapitulates common insults associated with surgery and ensuing complications. Using this model, we have started to characterize how induction of pain signaling contributes to neuropeptides changes in dorsal root ganglia (DRG) and sustained neuroinflammation in the spinal cord [62]. Here we have extended the characterization of pain behaviors for >3 months after surgery, describing a persistent deficit in mechanical allodynia in both male and female C57BL/6J mice after surgery. Notably, we have applied a novel minimally invasive bioelectronic approach to percutaneously stimulate the vagus nerve (termed pVNS) [24] and tested its anti-nociceptive effects in this model. Our results show that surgery induced a strong bilateral hind-paw allodynia with a slight decrease in motor coordination. However, treatment with pVNS for 30-minutes at10 Hz weekly for 3 weeks prevented pain behavior compared to naïve controls. pVNS also improved locomotor coordination and bone healing compared to surgery without treatment. In the DRGs, we observed that vagal stimulation fully rescued activation of GFAP positive satellite cells but did not affect microglial activation. Overall, these data provide novel evidence for the use of pVNS to prevent postoperative pain and may inform translational studies to test anti-nociceptive effects in the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245641PMC
http://dx.doi.org/10.1101/2023.05.16.540949DOI Listing

Publication Analysis

Top Keywords

postoperative pain
16
pain
9
vagus nerve
8
orthopedic surgery
8
persistent postoperative
8
anti-nociceptive effects
8
surgery
7
nerve stimulation
4
stimulation rescues
4
persistent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!