AI Article Synopsis

  • SARS CoV-2 nonstructural protein 1 (Nsp1) inhibits host translation by blocking initiation and causing cleavage of cellular mRNAs.
  • The study found that cleavage requires Nsp1 and only standard translation components, with different initiation factors needed for different mRNAs.
  • Key residues in Nsp1's N-terminal domain and eIF3g's RRM domain were identified as crucial for the cleavage process, indicating their role is consistent across various mRNA types.

Article Abstract

SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it on β-globin, EMCV IRES and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nucleotides downstream from the mRNA entrance indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of Nsp1-NTD and eIF3g's RRM domain in cleavage , irrespective of the mode of ribosomal attachment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245999PMC
http://dx.doi.org/10.1101/2023.05.25.542379DOI Listing

Publication Analysis

Top Keywords

rrm domain
16
eif3g's rrm
12
cleavage
10
sars cov-2
8
n-terminal domain
8
crpv ires
8
40s subunits
8
initiation factors
8
ribosomal attachment
8
domain cleavage
8

Similar Publications

Deciphering the interactome of Ataxin-2 and TDP-43 in iPSC-derived neurons for potential ALS targets.

PLoS One

December 2024

Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America.

Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43.

View Article and Find Full Text PDF

Challenges in Therapeutically Targeting the RNA-Recognition Motif.

Wiley Interdiscip Rev RNA

December 2024

Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany.

The RNA recognition motif (RRM) is the most common RNA binding domain found in the human proteome. RRM domains provide RNA-binding proteins with sequence specific RNA recognition allowing them to participate in RNA-centric processes such as mRNA maturation, translation initiation, splicing, and RNA degradation. They are drivers of various diseases through overexpression or mutation, making them attractive therapeutic targets and addressing these proteins through their RRM domains with chemical compounds is gaining ever more attention.

View Article and Find Full Text PDF

The entire RNA lifecycle, spanning from transcription to decay, is intricately regulated by RNA-binding proteins (RBPs). To understand their precise functions, it is crucial to identify direct targets, pinpoint their exact binding sites, and unravel the underlying specificity in vivo. Individual-nucleotide resolution UV crosslinking and immunoprecipitation 2 (iCLIP2) is a state-of-the-art technique that enables the identification of RBP binding sites at single-nucleotide resolution.

View Article and Find Full Text PDF

An Intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage.

J Mol Biol

November 2024

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States. Electronic address:

Proteins with intrinsically disordered regions (IDR) play diverse functions in regulating gene expression in the cell. Many of these proteins interact with cytoplasmic ribosomes. However, the molecular functions related to the interactions are largely unclear.

View Article and Find Full Text PDF

Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Mechanistic Insights into RNA Oligonucleotide-Mediated Inhibition of TDP-43 Aggregation.

J Am Chem Soc

December 2024

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Deposits of aggregated TAR DNA-binding protein 43 (TDP-43) in the brain are associated with several neurodegenerative diseases. It is well established that binding of RNA/DNA to TDP-43 can prevent TDP-43 aggregation, but an understanding of the structure(s) and conformational dynamics of TDP-43, and TDP-43-RNA complexes, is lacking, including knowledge of how the solution environment modulates these properties. Here, we address this challenge using hydrogen-deuterium exchange-mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!