Nde1 Promotes Lis1-Mediated Activation of Dynein.

bioRxiv

Physics Department, University of California, Berkeley, CA, USA, 94709.

Published: September 2023

AI Article Synopsis

  • Cytoplasmic dynein is a key motor protein that moves toward the microtubule minus end, requiring assembly with dynactin and a cargo adaptor for activation.
  • Recent research suggests that Lis1 helps activate dynein by overcoming its autoinhibited state, while the role of Nde1/Ndel1 is less clear.
  • This study found that Nde1 enhances dynein complex assembly by competing with PAF-AH for Lis1 binding and promoting the formation of active dynein-dynactin complexes, but excess Nde1 can inhibit dynein by competing for dynactin.

Article Abstract

Cytoplasmic dynein is the primary motor that drives the motility and force generation functions towards the microtubule minus end. The activation of dynein motility requires its assembly with dynactin and a cargo adaptor. This process is facilitated by two dynein-associated factors, Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 rescues dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigated how human Nde1 and Lis1 regulate the assembly and subsequent motility of the mammalian dynein/dynactin complex using in vitro reconstitution and single molecule imaging. We found that Nde1 promotes the assembly of active dynein complexes in two distinct ways. Nde1 competes with the α2 subunit of platelet activator factor acetylhydrolase (PAF-AH) 1B, which recruits Lis1 as a noncatalytic subunit and prevents its binding to dynein. Second, Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin-adaptor complexes. However, excess Nde1 inhibits dynein, presumably by competing against dynactin to bind the dynein intermediate chain. The association of dynactin with dynein triggers Nde1 dissociation before the initiation of dynein motility. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246013PMC
http://dx.doi.org/10.1101/2023.05.26.542537DOI Listing

Publication Analysis

Top Keywords

dynein
12
nde1
8
nde1 promotes
8
promotes lis1-mediated
8
activation dynein
8
dynein motility
8
nde1 lis1
8
recruits lis1
8
lis1
6
lis1-mediated activation
4

Similar Publications

The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis.

Curr Biol

January 2025

Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel. Electronic address:

Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear.

View Article and Find Full Text PDF

Background: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Multiple morphological abnormalities of the sperm flagella (MMAF) represent a severe and genetically heterogeneous form of asthenozoospermia. Over 50 genes have been associated, but approximately half of MMAF cases remain unexplained.

View Article and Find Full Text PDF

Impact of DNAH3 Deficiency on Sperm Energy Metabolism and Motility Leading to Asthenozoospermia.

Biol Reprod

January 2025

Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.

Asthenozoospermia, a prevalent contributor to male infertility, exhibits a multifaceted pathogenesis. This study identified a significant downregulation in sperm dynein heavy chain 3 (DNAH3) protein levels in individuals with asthenozoospermia. To elucidate the role of DNAH3 in asthenozoospermia, we constructed Dnah3-knockout (KO) mice, which exhibited asthenozoospermia and sterility.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!