A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of personality traits on learners' navigational behavior patterns in an online course: a lag sequential analysis approach. | LitMetric

Personality is considered as the internal factor that defines a person's behavior. Therefore, providing adaptive features and personalized support in online learning by considering learners' personalities can improve their learning experiences and outcomes. In this context, several research studies have investigated the impact of personality differences in online learning. However, little is known about how personality differences affect learners' behavior while learning. To fill this gap, this study applies a lag sequential analysis (LSA) approach to understand learners' navigational behavior patterns in an online three-months course of 65 learners based on their personalities. In this context, the five factor model (FFM) model was used to identify learners' personalities. The findings revealed that learners with different personalities use different strategies to learn and navigate within the course. For instance, learners high in extraversion tend to be extrinsically motivated. They therefore significantly navigated between viewing the course module and their personal achievements. The findings of this study can contribute to the adaptive learning field by providing insights about which personalization features can help learners with different personalities. The findings can also contribute to the field of automatic modeling of personality by providing information about differences in navigational behavior based on learners' personalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245556PMC
http://dx.doi.org/10.3389/fpsyg.2023.1071985DOI Listing

Publication Analysis

Top Keywords

navigational behavior
12
learners' personalities
12
impact personality
8
learners' navigational
8
behavior patterns
8
patterns online
8
lag sequential
8
sequential analysis
8
online learning
8
personality differences
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!