AI Article Synopsis

  • Bevel-tip needles are crucial for procedures requiring curved insertion, making needle shape sensing important for accuracy.
  • The study compares two types of fiber Bragg grating (FBG) sensors within identical conditions to see which performs better in needle shape reconstruction.
  • Results show that the single core needle has a lower tip error (1.23 mm) compared to the multicore needle (2.08 mm), highlighting the advantages of the single core design for shape sensing tasks.

Article Abstract

Bevel-tip needles are commonly utilized in percutaneous medical interventions where a curved insertion trajectory is required. To avoid deviation from the intended trajectory, needle shape sensing and tip localization is crucial in providing the operator with feedback. There is an abundance of previous work that investigate the medical application of fiber Bragg grating (FBG) sensors, but most works select only one specific type of fiber among the many available sensor options to integrate into their hardware designs. In this work, we compare two different types of FBG sensors under identical conditions and application, namely, acting as the sensor for needle insertion shape reconstruction. We built a three-channel single core needle and a seven-channel multicore fiber (MCF) needle and discuss the pros and cons of both constructions for shape sensing experiments into constant curvature jigs. The overall needle tip error is 1.23 mm for the single core needle and 2.08 mm for the multicore needle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249955PMC
http://dx.doi.org/10.1109/ismr57123.2023.10130249DOI Listing

Publication Analysis

Top Keywords

shape sensing
12
single core
12
needle
8
needle shape
8
three-channel single
8
fbg sensors
8
core needle
8
optical fiber
4
fiber -based
4
-based needle
4

Similar Publications

This research explores patterns of views on substance use among Norwegian adolescent girls aged 16-19 years. By examining the participants' experiences, attitudes and needs, the study seeks to uncover how teenage girls experience the use of substances, how the use impacts their daily lives, and their relationships with peers, family and welfare professionals. To achieve this understanding, we utilised Q methodology to capture the perspectives of 42 Norwegian adolescent girls.

View Article and Find Full Text PDF

Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention.

View Article and Find Full Text PDF

This study investigates the functional and biological activities of a polysaccharide-polyphenolic complex derived from the edible mushroom Agrocybe aegerita. Polyphenols (AMP) were extracted using a modified solvent evaporation technique, and polysaccharides (AMPP) were extracted using enzyme-assisted methods, yielding 8.02 %.

View Article and Find Full Text PDF

Hotspots of genetic change in Yersinia pestis.

Nat Commun

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.

The relative contributions of mutation rate variation, selection, and recombination in shaping genomic variation in bacterial populations remain poorly understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a century and including 2336 newly sequenced strains, to shed light on the patterns of genetic diversity and variation distribution at the population level. We identify 45 genomic regions ("hot regions", HRs) that, although comprising a minor fraction of the genome, are hotbeds of genetic variation.

View Article and Find Full Text PDF

Cell shape modulates mitotic spindle positioning forces via intracellular hydrodynamics.

Curr Biol

December 2024

Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France. Electronic address:

The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues. In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis. To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!