Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/tde-2023-0008 | DOI Listing |
Cancer remains a global health threat, with traditional treatments limited by adverse effects and drug resistance. Nanozyme-based catalytic therapy with high stability and controllable activity provides targeted and specific in situ tumor treatment to address these challenges. More intriguingly, the tremendous advances in nanotechnology have enabled nanozymes to rival the catalytic activity of natural enzymes, presenting an exciting opportunity for innovating antitumor nanodrugs.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO) nanospheres, we constructed an injectable composite hydrogel (AhCeO-Gel) with microenvironment modulation capability. AhCeO-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs.
View Article and Find Full Text PDFSmall
December 2024
Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, and Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China.
Nanozymes with multienzyme-like activity have sparked significant interest in anti-tumor therapy via responding to the tumor microenvironment (TME). However, the consequent induction of protective autophagy substantially compromises the therapeutic efficacy. Here, a targeted nanozyme system (Fe-Arg-CDs@ZIF-8/HAD, FZH) is shown, which enhances synergistic anti-tumor ferroptosis/apoptosis therapy by leveraging machine learning (ML).
View Article and Find Full Text PDFJ Control Release
January 2025
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China. Electronic address:
Rheumatoid arthritis (RA) is a prevalent chronic autoimmune disease that leads to severe joint damage and disability. Conventional treatment options are limited by their efficacy and side effect profiles. Nanozymes, nanomaterials with enzyme-like activities, offer a novel therapeutic approach for RA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!