Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Collagen multifilament bundles comprised of thousands of monofilaments are prepared by multipin contact drawing of an entangled polymer solution consisting of collagen and poly(ethylene oxide) (PEO). The multifilament bundles are hydrated in graded concentrations of PEO and phosphate buffered saline (PBS) to promote assembly of collagen fibrils within each monofilament while preserving the structure of the multifilament bundle. Multiscale structural characterization reveals that the hydrated multifilament bundle contains properly folded collagen molecules packed in collagen fibrils containing microfibrils, staggered by exactly one-sixth of the microfibril D-band spacing to produce a periodicity of 11 nm. Sequence analysis predicts that in this structure, phenylalanine residues are close enough within and between microfibrils to become ultraviolet C (UVC) crosslinked. In agreement with this analysis, the ultimate tensile strength (UTS) and Young's modulus of the hydrated collagen multifilament bundles crosslinked by UVC radiation increase nonlinearly with total UVC energy to reach values in the range of native tendons without damage to the collagen molecules. This fabrication method recapitulates the structure of a tendon across multiple length scales and offers tunability in tensile properties using only collagen molecules and no other chemical additives in addition to PEO, which is almost entirely removed during the hydration process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202300204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!