A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multifilament Collagen Fiber Bundles with Tendon-like Structure and Mechanical Performance. | LitMetric

Multifilament Collagen Fiber Bundles with Tendon-like Structure and Mechanical Performance.

Macromol Rapid Commun

Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.

Published: September 2023

Collagen multifilament bundles comprised of thousands of monofilaments are prepared by multipin contact drawing of an entangled polymer solution consisting of collagen and poly(ethylene oxide) (PEO). The multifilament bundles are hydrated in graded concentrations of PEO and phosphate buffered saline (PBS) to promote assembly of collagen fibrils within each monofilament while preserving the structure of the multifilament bundle. Multiscale structural characterization reveals that the hydrated multifilament bundle contains properly folded collagen molecules packed in collagen fibrils containing microfibrils, staggered by exactly one-sixth of the microfibril D-band spacing to produce a periodicity of 11 nm. Sequence analysis predicts that in this structure, phenylalanine residues are close enough within and between microfibrils to become ultraviolet C (UVC) crosslinked. In agreement with this analysis, the ultimate tensile strength (UTS) and Young's modulus of the hydrated collagen multifilament bundles crosslinked by UVC radiation increase nonlinearly with total UVC energy to reach values in the range of native tendons without damage to the collagen molecules. This fabrication method recapitulates the structure of a tendon across multiple length scales and offers tunability in tensile properties using only collagen molecules and no other chemical additives in addition to PEO, which is almost entirely removed during the hydration process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202300204DOI Listing

Publication Analysis

Top Keywords

multifilament bundles
12
collagen molecules
12
collagen
8
collagen multifilament
8
collagen fibrils
8
multifilament bundle
8
multifilament
6
multifilament collagen
4
collagen fiber
4
bundles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!