Osteoarthritis (OA), a late-stage complication of developmental dysplasia of the hip (DDH), is a key factor leading to further degeneration of joint function. Studies have shown that Sestrin2 (SESN2) is a positive regulator in protecting articular cartilage from degradation. However, the regulatory effects of SESN2 on DDH-OA and its upstream regulators remain obscure. Here, we first identified that the expression of SESN2 significantly decreased in the cartilage of DDH-OA samples, with an expression trend negatively correlated with OA severity. Using RNA sequencing, we identified that the upregulation of miR-34a-5p may be an important factor for the decrease in SESN2 expression. Further exploring the regulation mechanism of miR-34a-5p/SESN2 is of great significance for understanding the mechanism of DDH occurrence and development. Mechanistically, we showed that miR-34a-5p could significantly inhibit the expression of SESN2, thereby promoting the activity of the mTOR signaling pathway. We also found that miR-34a-5p significantly inhibited SESN2-induced autophagy, thereby suppressing the proliferation and migration of chondrocytes. We further validated that knocking down miR-34a-5p in vivo resulted in a significant increase in SESN2 expression and autophagy activity in DDH-OA cartilage. Our study suggests that miR-34a-5p is a negative regulator of DDH-OA, and may provide a new target for the prevention of DDH-OA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.25639DOI Listing

Publication Analysis

Top Keywords

developmental dysplasia
8
dysplasia hip
8
sesn2-induced autophagy
8
expression sesn2
8
sesn2 expression
8
sesn2
6
ddh-oa
5
expression
5
mir-34a-5p
5
microrna-34a-5p promotes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!