Teeth are subject to a variety of mechanical forces and vectors. The periodontal ligament (PDL), fibrous tissue that connects the cementum of the tooth to the bony socket, plays a decisive role in transmitting force to alveolar bone via Sharpey fibers, transforming and converting these forces into biological signals. This interaction effects significant osteoblastic and osteoclastic responses via autocrine proliferative and paracrine responses. Recent discoveries of receptors for temperature and touch by the Nobel laureates David Julius and Ardem Patapoutian, respectively have a profound impact on orthodontics. Transient receptor vanilloid channel 1 (TRPV1), initially described as a receptor for temperature, has been proposed to participate in the sensing of force. TRPV4, another ion channel receptor, perceives tensile forces as well as thermal and chemical stimuli. Piezo1 and 2, the classic receptors for touch, in addition to the aforementioned receptors, have similarly been described on PDL-derived cells. In this text, we review the role of the temperature-sensitive ion channels and mechanosensitive ion channels on their biological function and influence in orthodontic treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jre.13137DOI Listing

Publication Analysis

Top Keywords

ion channels
16
periodontal ligament
8
temperature-sensitive ion
8
mechanosensitive ion
8
ion
5
ligament temperature-sensitive
4
channels
4
channels trpv1-4
4
trpv1-4 mechanosensitive
4
channels piezo1
4

Similar Publications

In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.

View Article and Find Full Text PDF

Reduced trophoblast migration and invasion contribute to unexplained recurrent spontaneous abortion (URSA). Aquaporin 3 (AQP3) plays a crucial role in facilitating trophoblast migration and invasion during early pregnancy through fetal-maternal crosstalk. This study aimed to comprehensively investigate the mechanism involving AQP3 and its modulatory effects on human extravillous trophoblast (HTR-8/SVneo cells) migration and invasion.

View Article and Find Full Text PDF

In this Highlights article, we present insights into the use of simple cell lines in neuroinflammation research, highlighting key findings from our recent investigations. Simple cell lines, including HEK, PC12, SHSY5Y, and N2a cells, provide valuable insights into critical signaling pathways and hidden facets of the neuroinflammatory landscape. Focusing on specific outcomes, including the impact of interleukin-6 (IL-6) and acid-sensing ion channels (ASIC1a), the study sheds light on neuroinflammatory processes.

View Article and Find Full Text PDF

From pain to meningitis: bacteria hijack nociceptors to promote meningitis.

Front Immunol

January 2025

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Bacterial meningitis is a severe and life-threatening infection of the central nervous system (CNS), primarily caused by and . This condition carries a high risk of mortality and severe neurological sequelae, such as cognitive impairment and epilepsy. Pain, a central feature of meningitis, results from the activation of nociceptor sensory neurons by inflammatory mediators or bacterial toxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!