AI Article Synopsis

  • Skin is the largest organ and serves as the body's primary defense against damage and infections, making its health crucial.
  • Delayed wound healing is a significant issue in healthcare, sometimes leading to serious consequences, prompting the development of various advanced wound dressings that protect against infections.
  • The paper focuses on MXene nanoparticles, highlighting their exceptional properties and potential as effective components in wound dressings for skin injury repair.

Article Abstract

Skin is the largest organ of the human body. It plays a vital role as the body's first barrier: stopping chemical, radiological damage and microbial invasion. The importance of skin to the human body can never be overstated. Delayed wound healing after a skin injury has become a huge challenge in healthcare. In some situations, this can have very serious and even life-threatening effects on people's health. Various wound dressings have been developed to promote quicker wound healing, including hydrogels, gelatin sponges, films, and bandages, all work to prevent the invasion of microbial pathogens. Some of them are also packed with bioactive agents, such as antibiotics, nanoparticles, and growth factors, that help to improve the performance of the dressing it is added to. Recently, bioactive nanoparticles as the bioactive agent have become widely used in wound dressings. Among these, functional inorganic nanoparticles are favored due to their ability to effectively improve the tissue-repairing properties of biomaterials. MXene nanoparticles have attracted the interest of scholars due to their unique properties of electrical conductivity, hydrophilicity, antibacterial properties, and biocompatibility. The potential for its application is very promising as an effective functional component of wound dressings. In this paper, we will review MXene nanoparticles in skin injury repair, particularly its synthesis method, functional properties, biocompatibility, and application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251591PMC
http://dx.doi.org/10.1186/s13036-023-00355-7DOI Listing

Publication Analysis

Top Keywords

mxene nanoparticles
12
wound healing
12
wound dressings
12
healing skin
8
human body
8
skin injury
8
properties biocompatibility
8
nanoparticles
6
wound
6
advances application
4

Similar Publications

Synchronous enhancement of antimicrobial and mechanical properties of natural rubber by MXene functionalized with SiO.

Int J Biol Macromol

January 2025

Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China; Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province, Kunming, Yunnan 650500, China. Electronic address:

The development of natural rubber (NR) gloves with superior antibacterial and enhanced mechanical properties is critical for safeguarding healthcare personnel. In this study, Ti-based MXene (TiCT) nanosheets were employed for the first time as an antibacterial agent to improve the antimicrobial performance of NR. Through SiO₂ intercalation via electronic assembly, the antibacterial efficacy of MXene was significantly boosted, achieving 100 % lethality against E.

View Article and Find Full Text PDF

High-Performance Photocatalytic Multifunctional Material Based on BiTiO-Supported Ag and TiCT for Organic Degradation and Antibacterial Applications.

Biosensors (Basel)

December 2024

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.

With the rapid development of modern science and technology and the diversification of social needs, traditional single-performance materials struggle to meet the complex and changeable application scenarios. To address the multifaceted requirements of biomedical applications, such as disease diagnosis and treatment, scientists are dedicated to developing new multifunctional biomaterials with multiple activities. BiTiO (BTO), despite its versatility and application potential, has insufficient photocatalytic performance.

View Article and Find Full Text PDF

Cystatin C (Cys-C) is emerging as a critical biomarker for assess gestational diabetes mellitus (GDM), a condition that significantly impacts maternal and fetal health. In this study, we developed a novel label-free electrochemical immunosensor designed for point-of-care applications, offering lower reagent consumption and rapid detection of Cys-C in pregnant women with GDM. Compared to traditional enzyme-linked immunosorbent assays (ELISA), the sensor demonstrates enhanced sensitivity, reduced reagent usage, and faster detection.

View Article and Find Full Text PDF

As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity.

View Article and Find Full Text PDF

Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!