The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time, including thin-film capacitors. The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material. However, it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously. Considering that boron nitride nanosheets (BNNS) possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure, a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate (PET) films. By revealing the bandgap and insulating behavior with UV absorption spectrum, leakage current, and finite element calculation, it is manifested that nanocoating contributes to enhance the bandgap of polymer films, thereby suppressing the charge injection by redirecting their transport from electrodes. Worthy to note that an ultrahigh breakdown field strength (~ 736 MV m), an excellent discharge energy density (~ 8.77 J cm) and a prominent charge-discharge efficiency (~ 96.51%) are achieved concurrently, which is ascribed to the contribution of BNNS ultrathin layer. In addition, the modified PET films also have superior comprehensive performance at high temperatures (~ 120 °C). The materials and methods here selected are easily accessible and facile, which are suitable for large-scale roll-to-roll process production, and are of certain significance to explore the methods about film modification suitable for commercial promotion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250289 | PMC |
http://dx.doi.org/10.1007/s40820-023-01121-6 | DOI Listing |
Nat Commun
December 2024
Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.
View Article and Find Full Text PDFNat Commun
December 2024
Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor.
View Article and Find Full Text PDFJ Med Virol
January 2025
Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
The two most clinically important members of the flavivirus genus, Zika virus (ZIKV) and dengue virus (DENV) pose a significant public health challenge. They cause a range of diseases in humans, from hemorrhagic to neurological manifestations, leading to economic and social burden worldwide. Nevertheless, there are no approved antiviral drugs to treat these infections.
View Article and Find Full Text PDFBMC Womens Health
December 2024
The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315000, China.
Background: This study aimed to construct, evaluate, and validate nomograms for breast cancer-specific survival (BCSS) and overall survival (OS) prediction in patients with HER2- overexpressing (HER2+) metastatic breast cancer (MBC).
Methods: The Surveillance, Epidemiology, and End Results (SEER) database was used to select female patients diagnosed with HER2 + MBC between 2010 and 2015. These patients were distributed into training and validation groups (7:3 ratio).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!