Cerebral Autoregulation: Don't go with the Flow, be the Flow.

Neurocrit Care

Department of Anaesthesia and Critical Care, Hôpital Lariboisière, Assistance Publique des Hôpitaux de Paris, Paris, France.

Published: August 2023

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12028-023-01763-9DOI Listing

Publication Analysis

Top Keywords

cerebral autoregulation
4
autoregulation flow
4
flow flow
4
flow
2
cerebral
1

Similar Publications

Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.

View Article and Find Full Text PDF

Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.

Life Metab

February 2025

New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.

Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.

View Article and Find Full Text PDF

A biomarker framework for liver aging: the Aging Biomarker Consortium consensus statement.

Life Med

February 2024

Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.

In human aging, liver aging per se not only increases susceptibility to liver diseases but also increases vulnerability of other organs given its central role in regulating metabolism. Total liver function tends to be well maintained in the healthy elderly, so liver aging is generally difficult to identify early. In response to this critical challenge, the Aging Biomarker Consortium of China has formulated an expert consensus on biomarkers of liver aging by synthesizing the latest scientific literature, comprising insights from both scientists and clinicians.

View Article and Find Full Text PDF

Myokines: metabolic regulation in obesity and type 2 diabetes.

Life Metab

June 2024

Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis.

View Article and Find Full Text PDF

The ABC transporter A7 modulates neuroinflammation via NLRP3 inflammasome in Alzheimer's disease mice.

Alzheimers Res Ther

January 2025

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.

Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!