Objectives: This study aims to use ultrasound derived features as biomarkers to assess the malignancy of thyroid nodules in patients who were candidates for FNA according to the ACR TI-RADS guidelines.
Methods: Two hundred and ten patients who met the selection criteria were enrolled in the study and subjected to ultrasound-guided FNA of thyroid nodules. Different radiomics features were extracted from sonographic images, including intensity, shape, and texture feature sets. Least Absolute Shrinkage and Selection Operator (LASSO), Minimum Redundancy Maximum Relevance (MRMR), and Random Forests/Extreme Gradient Boosting Machine (XGBoost) algorithms were used for feature selection and classification of the univariate and multivariate modeling, respectively. Evaluation of models performed using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).
Results: In the univariate analysis, Gray Level Run Length Matrix - Run-Length Non-Uniformity (GLRLM-RLNU) and gray-level zone length matrix - Run-Length Non-Uniformity (GLZLM-GLNU) (both with an AUC of 0.67) were top-performing for predicting nodules malignancy. In the multivariate analysis of the training dataset, the AUC of all combinations of feature selection algorithms and classifiers was 0.99, and the highest sensitivity was for XGBoost classifier and MRMR feature selection algorithms (0.99). Finally, the test dataset was used to evaluate our model in which XGBoost classifier with MRMR and LASSO feature selection algorithms had the highest performance (AUC = 0.95).
Conclusions: Ultrasound-extracted features can be used as non-invasive biomarkers for thyroid nodules' malignancy prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12020-023-03407-6 | DOI Listing |
STAR Protoc
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA. Electronic address:
Here, we present a protocol for using Myotally, a user-friendly software for fast, automated quantification of muscle fiber size, number, and central nucleation from immunofluorescent stains of mouse skeletal muscle cross-sections. We describe steps for installing the software, preparing compatible images, finding the file path, and selecting key parameters like image quality and size limits. We also detail optional features, such as measuring mean fluorescence.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Department of Radiology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.
Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.
Bioinformatics
January 2025
Department of Pathology and Department of Immunobiology, Yale School of Medicine.
Summary: With the increased reliance on multi-omics data for bulk and single cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Non-linear Iterative Partial Least Squares (NIPALS). We applied nipalsMCIA to both bulk and single cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.
View Article and Find Full Text PDFBMC Geriatr
January 2025
Department of Cardiology, The Second Hospital & Clinical Medical School, Lanzhou University, No. 82 Cuiyingmen, Lanzhou, 730000, China.
Objective: Constructing a predictive model for the occurrence of heart disease in elderly hypertensive individuals, aiming to provide early risk identification.
Methods: A total of 934 participants aged 60 and above from the China Health and Retirement Longitudinal Study with a 7-year follow-up (2011-2018) were included. Machine learning methods (logistic regression, XGBoost, DNN) were employed to build a model predicting heart disease risk in hypertensive patients.
Sci Rep
January 2025
Department of Orthopaedics, Traditional Chinese Medical Hospital of Gansu Province, Qilihe District, Guazhou Street 418, Lanzhou, 730050,, Gansu, China.
Knee osteoarthritis (KOA) represents a progressive degenerative disorder characterized by the gradual erosion of articular cartilage. This study aimed to develop and validate biomarker-based predictive models for KOA diagnosis using machine learning techniques. Clinical data from 2594 samples were obtained and stratified into training and validation datasets in a 7:3 ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!