The period around the mid-late Holocene transition (c. 2200 BC) saw major societal developments across the eastern Mediterranean. At the same time, the region experienced a shift to more arid climatic conditions. This included punctuated episodes of rapid climate change such as the '4.2 ka event', which has been implicated in widespread societal 'collapse' at the end of the Early Bronze Age. The ways in which societies adapted agricultural production to cope with a drying climate are poorly understood. We begin to rectify this through stable isotope analysis of archaeobotanical remains from the Aegean region of western Türkiye, conducted to reveal changes in agricultural decision making across the mid-late Holocene transition. We find that Bronze Age farmers adapted agricultural production strategies by investing in drought-tolerant cereals cultivated on drier fields with water management strategies redirected towards pulses. Despite this, we find no evidence for pronounced drought stress in cereals grown during the period of the 4.2 ka event. This raises the potential for alternative explanations for societal disruptions visible across the Anatolian Plateau during this time, such as the breakdown of long-distance trade networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250297PMC
http://dx.doi.org/10.1038/s41598-023-36109-0DOI Listing

Publication Analysis

Top Keywords

mid-late holocene
12
climate change
8
western türkiye
8
holocene transition
8
bronze age
8
adapted agricultural
8
agricultural production
8
agricultural
4
agricultural adaptations
4
adaptations mid-late
4

Similar Publications

The period around the mid-late Holocene transition (c. 2200 BC) saw major societal developments across the eastern Mediterranean. At the same time, the region experienced a shift to more arid climatic conditions.

View Article and Find Full Text PDF

Predictions of the effects of modern Relative Sea-Level (RSL) rise on mangroves should be based on decadal-millennial mangrove dynamics and the particularities of each depositional environment under past RSL changes. This work identified inland and seaward mangrove migrations along the Ceará-Mirim estuary (Rio Grande do Norte, northeastern Brazil) during the mid-late Holocene and Anthropocene based on sedimentary features, palynological, and geochemical (δC, δN, C/N) data integrated with spatial-temporal analysis based on satellite images. The data indicated three phases for the mangrove development: (1°) mangrove expansion on tidal flats with estuarine organic matter between >4420 and ~2870 cal yrs BP, under the influence of the mid-Holocene sea-level highstand; (2°) mangrove contraction with an increased contribution of C terrestrial plants between ~2870 and ~84 cal yrs BP due to an RSL fall, and (3°) mangrove expansion onto the highest tidal flats since ~84 cal yr BP due to a relative sea-level rise.

View Article and Find Full Text PDF

Responses of Caribbean Mangroves to Quaternary Climatic, Eustatic, and Anthropogenic Drivers of Ecological Change: A Review.

Plants (Basel)

December 2022

Botanic Institute of Barcelona (IBB), Spanish National Research Council (CSIC), Pg. del Migdia s/n, 08038 Barcelona, Spain.

Mangroves are among the world's most threatened ecosystems. Understanding how these ecosystems responded to past natural and anthropogenic drivers of ecological change is essential not only for understanding how extant mangroves have been shaped but also for informing their conservation. This paper reviews the available paleoecological evidence for Pleistocene and Holocene responses of Caribbean mangroves to climatic, eustatic, and anthropogenic drivers.

View Article and Find Full Text PDF

Increasing extreme temperature, precipitation and rapid meltwater events have added stress to the Himalaya's hydrological sensitivity and major flood risks, however, current extreme hydrological dataset and their genesis are insufficient to assess future flood discharge extremes in High Asian' rivers. Here, Holocene extreme floods in the Yarlung Tsangpo River valley were reconstructed by using physic-chemical analysis, optically stimulated luminescence dating and palaeohydraulic techniques. Palaeoflood slackwater deposits (SWDs) were identified by means of palaeohydrological criteria and comparison with SWDs from large flood that occurred in 2018.

View Article and Find Full Text PDF

This study provides a high-resolution reconstruction of the vegetation of the Argive Plain (Peloponnese, Greece) covering 5000 years from the Early Bronze Age onwards. The well dated pollen record from ancient Lake Lerna has been interpreted in the light of archaeological and historical sources, climatic data from the same core and other regional proxies. Our results demonstrate a significant degree of human impact on the environments of the Argive Plain throughout the study period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!